Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation

被引:221
作者
Wang, AQ
Chang, CM
Mou, CY [1 ]
机构
[1] Natl Taiwan Univ, Dept Chem, Taipei 106, Taiwan
[2] Natl Dong Hwa Univ, Dept Phys, Hualien 974, Taiwan
关键词
D O I
10.1021/jp051530q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a novel Au-Ag alloy catalyst supported on mesoporous aluminosilicate Au-Ag@MCM prepared by a one-pot synthesis procedure, which is very active for low-temperature CO oxidation. The activity was highly dependent on the hydrogen pretreatment conditions. Reduction at 550-650 degrees C led to high activity at room temperature, whereas as-synthesized or calcined samples did not show any activity at the same temperature. Using various characterization techniques, such as XRD, UV-vis, XPS, and EXAFS, we elucidated the structure and surface composition change during calcination and the reduction process. The XRD patterns show that particle size increased only during the calcination process on those Ag-containing samples. XPS and EXAFS data demonstrate that calcination led to complete phase segregation of the Au-Ag alloy and the catalyst surface is greatly enriched with AgBr after the calcination process. However, subsequent reduction treatment removed Br- completely and the Au-Ag alloy was formed again. The surface composition of the reduced Au-Ag@MCM (nominal Au/Ag = 3/1) was more enriched with Ag, with the surface Au/Ag ratio being 0.75. ESR spectra show that superoxides are formed on the surface of the catalyst and its intensity change correlates well with the trend of catalytic activity. A DFT calculation shows that CO and O-2 coadsorption on neighboring sites on the Au-Ag alloy was stronger than that on either An or Ag. The strong synergism in the coadsorption of CO and O-2 on the Au-Ag nanoparticle can thus explain the observed synergetic effect in catalysis.
引用
收藏
页码:18860 / 18867
页数:8
相关论文
共 40 条
[1]   Oxidation of CO on gold supported catalysts prepared by laser vaporization: Direct evidence of support contribution [J].
Arrii, S ;
Morfin, F ;
Renouprez, AJ ;
Rousset, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (04) :1199-1205
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Au/TiO2 nanosized samples:: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation [J].
Boccuzzi, F ;
Chiorino, A ;
Manzoli, M ;
Lu, P ;
Akita, T ;
Ichikawa, S ;
Haruta, M .
JOURNAL OF CATALYSIS, 2001, 202 (02) :256-267
[4]   Catalysis by gold [J].
Bond, GC ;
Thompson, DT .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (3-4) :319-388
[5]   Nanocrystalline CeO2 increases the activity of an for CO oxidation by two orders of magnitude [J].
Carrettin, S ;
Concepción, P ;
Corma, A ;
Nieto, JML ;
Puntes, VF .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (19) :2538-2540
[6]   The structure of catalytically active gold on titania [J].
Chen, MS ;
Goodman, DW .
SCIENCE, 2004, 306 (5694) :252-255
[7]   CO oxidation on supported nano-Au catalysts synthesized from a [Au6(PPh3)6](BF4)2 complex [J].
Choudhary, TV ;
Sivadinarayana, C ;
Chusuei, CC ;
Datye, AK ;
Fackler, JP ;
Goodman, DW .
JOURNAL OF CATALYSIS, 2002, 207 (02) :247-255
[8]   Supported gold nanoparticles from quantum dot to mesoscopic size scale:: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups [J].
Claus, P ;
Brückner, A ;
Mohr, C ;
Hofmeister, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (46) :11430-11439
[9]   Activation of Au/γ-Al2O3 catalysts for CO oxidation:: Characterization by X-ray absorption near edge structure and temperature programmed reduction [J].
Costello, CK ;
Guzman, J ;
Yang, JH ;
Wang, YM ;
Kung, MC ;
Gates, BC ;
Kung, HH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (33) :12529-12536
[10]   Vital role of moisture in the catalytic activity of supported gold nanoparticles [J].
Daté, M ;
Okumura, M ;
Tsubota, S ;
Haruta, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (16) :2129-2132