Jammed spheres: Minkowski tensors reveal onset of local crystallinity

被引:67
作者
Kapfer, Sebastian C. [1 ]
Mickel, Walter [1 ,2 ,3 ,4 ]
Mecke, Klaus [1 ]
Schroeder-Turk, Gerd E. [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany
[2] Univ Lyon, F-69000 Lyon, France
[3] CNRS, UMR5586, Lab PMCN, Lyon, France
[4] Karlsruhe Inst Technol, Inst Stochast, D-76128 Karlsruhe, Germany
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 03期
关键词
RANDOM CLOSE PACKING; ENTROPY DIFFERENCE; TRANSITION;
D O I
10.1103/PhysRevE.85.030301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The local structure of disordered jammed packings of monodisperse spheres without friction, generated by the Lubachevsky-Stillinger algorithm, is studied for packing fractions above and below 64%. The structural similarity of the particle environments to fcc or hcp crystalline packings (local crystallinity) is quantified by order metrics based on rank-four Minkowski tensors. We find a critical packing fraction phi(c) approximate to 0.649, distinctly higher than previously reported values for the contested random close packing limit. At phi(c), the probability of finding local crystalline configurations first becomes finite and, for larger packing fractions, increases by several orders of magnitude. This provides quantitative evidence of an abrupt onset of local crystallinity at phi(c). We demonstrate that the identification of local crystallinity by the frequently used local bond-orientational order metric q(6) produces false positives and thus conceals the abrupt onset of local crystallinity. Since the critical packing fraction is significantly above results from mean-field analysis of the mechanical contacts for frictionless spheres, it is suggested that dynamic arrest due to isostaticity and the alleged geometric phase transition in the Edwards framework may be disconnected phenomena.
引用
收藏
页数:4
相关论文
共 31 条
[1]   Applications of local crystal structure measures in experiment and simulation [J].
Ackland, GJ ;
Jones, AP .
PHYSICAL REVIEW B, 2006, 73 (05)
[2]   Structural and entropic insights into the nature of the random-close-packing limit [J].
Anikeenko, A. V. ;
Medvedev, N. N. ;
Aste, T. .
PHYSICAL REVIEW E, 2008, 77 (03)
[3]   Polytetrahedral nature of the dense disordered packings of hard spheres [J].
Anikeenko, A. V. ;
Medvedev, N. N. .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[4]   Random close packing in a granular model [J].
Aristoff, David ;
Radin, Charles .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (11)
[5]   Cell theory for liquid solids and glasses: From local packing configurations to global complex behaviors [J].
Aste, T ;
Coniglio, A .
EUROPHYSICS LETTERS, 2004, 67 (02) :165-171
[6]   Geometrical structure of disordered sphere packings [J].
Aste, T ;
Saadatfar, M ;
Senden, TJ .
PHYSICAL REVIEW E, 2005, 71 (06)
[7]   Packing fraction and measures of disorder of ultradense irregular packings of equal spheres. II. Transition from dense random packing [J].
Bargiel, M ;
Tory, EM .
ADVANCED POWDER TECHNOLOGY, 2001, 12 (04) :533-557
[8]   GEOMETRICAL APPROACH TO THE STRUCTURE OF LIQUIDS [J].
BERNAL, JD .
NATURE, 1959, 183 (4655) :141-147
[9]   Entropy difference between crystal phases [J].
Bolhuis, PG ;
Frenkel, D ;
Mau, SC ;
Huse, DA .
NATURE, 1997, 388 (6639) :235-236
[10]   THEORY OF POWDERS [J].
EDWARDS, SF ;
OAKESHOTT, RBS .
PHYSICA A, 1989, 157 (03) :1080-1090