Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS: Comparisons of Supervised and Unsupervised Machine Learning Models

被引:209
作者
Chang, Zhilu [1 ]
Du, Zhen [1 ]
Zhang, Fan [1 ]
Huang, Faming [1 ]
Chen, Jiawu [1 ]
Li, Wenbin [1 ]
Guo, Zizheng [2 ]
机构
[1] Nanchang Univ, Sch Civil Engn & Architecture, Nanchang 330031, Jiangxi, Peoples R China
[2] China Univ Geosci, Fac Engn, Wuhan 430074, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会; 中国国家自然科学基金;
关键词
landslide susceptibility prediction; supervised machine learning; unsupervised machine learning; remote sensing; Geographic Information System; ANALYTICAL HIERARCHY PROCESS; SUPPORT VECTOR MACHINE; LOGISTIC-REGRESSION; DECISION TREE; DISPLACEMENT PREDICTION; FREQUENCY RATIO; RANDOM FOREST; AREA; ALGORITHM; BIVARIATE;
D O I
10.3390/rs12030502
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Landslide susceptibility prediction (LSP) has been widely and effectively implemented by machine learning (ML) models based on remote sensing (RS) images and Geographic Information System (GIS). However, comparisons of the applications of ML models for LSP from the perspectives of supervised machine learning (SML) and unsupervised machine learning (USML) have not been explored. Hence, this study aims to compare the LSP performance of these SML and USML models, thus further to explore the advantages and disadvantages of these ML models and to realize a more accurate and reliable LSP result. Two representative SML models (support vector machine (SVM) and CHi-squared Automatic Interaction Detection (CHAID)) and two representative USML models (K-means and Kohonen models) are respectively used to scientifically predict the landslide susceptibility indexes, and then these prediction results are discussed. Ningdu County with 446 recorded landslides obtained through field investigations is introduced as case study. A total of 12 conditioning factors are obtained through procession of Landsat TM 8 images and high-resolution aerial images, topographical and hydrological spatial analysis of Digital Elevation Modeling in GIS software, and government reports. The area value under the curve of receiver operating features (AUC) is applied for evaluating the prediction accuracy of SML models, and the frequency ratio (FR) accuracy is then introduced to compare the remarkable prediction performance differences between SML and USML models. Overall, the receiver operation curve (ROC) results show that the AUC of the SVM is 0.892 and is slightly greater than the AUC of the CHAID model (0.872). The FR accuracy results show that the SVM model has the highest accuracy for LSP (77.80%), followed by the CHAID model (74.50%), the Kohonen model (72.8%) and the K-means model (69.7%), which indicates that the SML models can reach considerably better prediction capability than the USML models. It can be concluded that selecting recorded landslides as prior knowledge to train and test the LSP models is the key reason for the higher prediction accuracy of the SML models, while the lack of a priori knowledge and target guidance is an important reason for the low LSP accuracy of the USML models. Nevertheless, the USML models can also be used to implement LSP due to their advantages of efficient modeling processes, dimensionality reduction and strong scalability.
引用
收藏
页数:21
相关论文
共 71 条