Expander graph arguments for message-passing algorithms

被引:64
作者
Burshtein, D [1 ]
Miller, G [1 ]
机构
[1] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel
关键词
belief propagation; expander graph; iterative decoding; low-density parity-check (LDPC) codes;
D O I
10.1109/18.910588
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show how expander-based arguments may be used to prove that message-passing algorithms can correct a linear number of erroneous messages. The implication of this result is that when the block length is sufficiently large, once a message-passing algorithm has corrected a sufficiently large fraction of the errors, it will eventually correct all errors. This result is then combined with known results on the ability of message-passing algorithms to reduce the number of errors to an arbitrarily small fraction for relatively high transmission rates. The results hold for various message-passing algorithms, including Gallager's hard-decision and soft-decision (with clipping) decoding algorithms, Our results assume low-density parity-check (LDPC) codes based on an irregular bipartite graph.
引用
收藏
页码:782 / 790
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 1993, PROC IEEE INT C COMM, DOI 10.1109/ICC.1993.397441
[2]  
BAZZI L, UNPUB IEEE T INFORM
[3]  
Gallager RG, 1963, LOW DENSITY PARITY C
[4]  
Luby M. G., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P249, DOI 10.1145/276698.276756
[5]   Good error-correcting codes based on very sparse matrices [J].
MacKay, DJC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :399-431
[6]  
MILLER G, UNPUB IEEE T INFORM
[7]  
Motwani R., 1995, RANDOMIZED ALGORITHM
[8]  
Pearl P, 1988, PROBABILISTIC REASON, DOI DOI 10.1016/C2009-0-27609-4
[9]  
RICHARDSON T, UNPUB IEEE T INFORM
[10]   The capacity of low-density parity-check codes under message-passing decoding [J].
Richardson, TJ ;
Urbanke, RL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :599-618