The role of the cytoskeleton in cellular force generation in 2D and 3D environments

被引:119
作者
Kraning-Rush, Casey M. [1 ]
Carey, Shawn P. [1 ]
Califano, Joseph P. [1 ]
Smith, Brooke N. [1 ]
Reinhart-King, Cynthia A. [1 ]
机构
[1] Cornell Univ, Dept Biomed Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
SUBSTRATE; CELLS; FIBROBLASTS; ADHESION; ORGANIZATION; MECHANICS; MIGRATION; STIFFNESS; STRESSES;
D O I
10.1088/1478-3975/8/1/015009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments.
引用
收藏
页数:9
相关论文
共 31 条
[1]   Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells [J].
Aoudjit, F ;
Vuori, K .
ONCOGENE, 2001, 20 (36) :4995-5004
[2]   Small inhibitor of Bcl-2, HA14-1, selectively enhanced the apoptotic effect of cisplatin by modulating Bcl-2 family members in MDA-MB-231 breast cancer cells [J].
Arisan, Elif Damla ;
Kutuk, Ozgur ;
Tezil, Tugsan ;
Bodur, Cagri ;
Telci, Dilek ;
Basaga, Huveyda .
BREAST CANCER RESEARCH AND TREATMENT, 2010, 119 (02) :271-281
[3]   Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors [J].
Beningo, KA ;
Dembo, M ;
Wang, YI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (52) :18024-18029
[4]  
BORNSTEIN MB, 1958, LAB INVEST, V7, P134
[5]   Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow [J].
Cai, Yunfei ;
Biais, Nicolas ;
Giannone, Gregory ;
Tanase, Monica ;
Jiang, Guoying ;
Hofman, Jake M. ;
Wiggins, Chris H. ;
Silberzan, Pascal ;
Buguin, Axel ;
Ladoux, Benoit ;
Sheetz, Michael P. .
BIOPHYSICAL JOURNAL, 2006, 91 (10) :3907-3920
[6]   Substrate Stiffness and Cell Area Predict Cellular Traction Stresses in Single Cells and Cells in Contact [J].
Califano, Joseph P. ;
Reinhart-King, Cynthia A. .
CELLULAR AND MOLECULAR BIOENGINEERING, 2010, 3 (01) :68-75
[7]   A Balance of Substrate Mechanics and Matrix Chemistry Regulates Endothelial Cell Network Assembly [J].
Califano, Joseph P. ;
Reinhart-King, Cynthia A. .
CELLULAR AND MOLECULAR BIOENGINEERING, 2008, 1 (2-3) :122-132
[8]   QUANTITATIVE STUDY OF THE RABBIT AORTIC ENDOTHELIUM USING VASCULAR CASTS [J].
CORNHILL, JF ;
LEVESQUE, MJ ;
HERDERICK, EE ;
NEREM, RM ;
KILMAN, JW ;
VASKO, JS .
ATHEROSCLEROSIS, 1980, 35 (03) :321-337
[9]   Taking cell-matrix adhesions to the third dimension [J].
Cukierman, E ;
Pankov, R ;
Stevens, DR ;
Yamada, KM .
SCIENCE, 2001, 294 (5547) :1708-1712
[10]  
DANOWSKI BA, 1989, J CELL SCI, V93, P255