Minimum data image reconstruction algorithms with shift-invariant filtering for helical, cone-beam CT

被引:44
作者
Sidky, EY [1 ]
Zou, Y [1 ]
Pan, XC [1 ]
机构
[1] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
关键词
D O I
10.1088/0031-9155/50/8/002
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We derive accurate and efficient reconstruction algorithms for helical, cone-beam CT that employ shift-invariant filtering. Specifically, a new backprojection-filtration algorithm is developed, and a minimum data filtered-backprojection algorithm is derived. These reconstruction algorithms with shift-invariant filtering can accept data with transverse truncation, and hence allow for minimum data image reconstruction.
引用
收藏
页码:1643 / 1657
页数:15
相关论文
共 17 条
[1]  
DANIELSSON PE, 1997, P 1997 INT M FULL 3, P141
[2]   A solution to the long-object problem in helical cone-beam tomography [J].
Defrise, M ;
Noo, F ;
Kudo, H .
PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (03) :623-643
[3]  
GRANGEAT P, 1991, LECT NOTES MATH, V1497, P66
[4]  
Hildebrand F.B., 1976, Advanced Calculus for Applications, V2nd ed
[5]  
John F., 1938, DUKE MATH J, V4, P300, DOI [10.1215/S0012-7094-38-00423-5, DOI 10.1215/S0012-7094-38-00423-5]
[6]  
Kanwal RP., 1971, Linear integral equations, theory and technique
[7]   An improved exact filtered backprojection algorithm for spiral computed tomography [J].
Katsevich, A .
ADVANCES IN APPLIED MATHEMATICS, 2004, 32 (04) :681-697
[8]  
KATSEVICH A, 2001, 6 INT M FULL 3 DIM I, P3
[9]   Quasi-exact filtered backprojection algorithm for long-object problem in helical cone-beam tomography [J].
Kudo, H ;
Noo, F ;
Defrise, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (09) :902-921
[10]   A two-step Hilbert transform method for 2D image reconstruction [J].
Noo, F ;
Clackdoyle, R ;
Pack, JD .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (17) :3903-3923