Estimation of sampling variance of correlations in meta-analysis

被引:19
作者
Aguinis, H [1 ]
机构
[1] Univ Colorado, Grad Sch Business Adm, Denver, CO 80217 USA
关键词
D O I
10.1111/j.1744-6570.2001.tb00223.x
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Monte Carlo simulations were conducted to compare the performance of the traditional (Fisher, 1954) and mean (Hunter & Schmidt, 1990) estimators of the sampling variance of correlations in meta-analysis. The mean estimator differs from the traditional estimator in that it uses the mean observed correlation, averaged across studies, in the sampling variance formula. The simulations investigated the homogeneous (i.e., no true correlation variance across studies) and heterogeneous case (i.e., true correlation variance across studies). Results reveal Thai compared to the traditional estimator, the mean estimator provides less negatively biased estimates of sampling variance in the homogeneous and heterogeneous cases and more positively biased estimates in the heterogenous case. Thus, results support the use of the mean estimator unless strong, theory-based hypotheses regarding moderating effects exist.
引用
收藏
页码:569 / 590
页数:22
相关论文
共 31 条