Activation of a Ca2+-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain

被引:67
作者
Huang, JF
Teyton, L
Harper, JF
机构
[1] Scripps Res Inst, DEPT CELL BIOL, LA JOLLA, CA 92037 USA
[2] RW JOHNSON PHARMACEUT RES INST, PRI, SAN DIEGO, CA 92121 USA
关键词
D O I
10.1021/bi960498a
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ca2(+)-dependent protein kinases (CDPKs) are regulated by a C-terminal calmodulin-like domain (CaM-LD). The CaM-LD is connected to the kinase by a short junction sequence which contains a pseudosubstrate autoinhibitor. To understand how the CaM-LD regulates a CDPK, a recombinant CDPK (isoform CPK-1 from Arabidopsis, accession no. L14771) was made as a fusion protein in Escherichia coli. We show here that a truncated CDPK lacking a CaM-LD (e.g. mutant Delta NC-2(6H)) can be activated by exogenous calmodulin or an isolated CaM-LD (K-act approximate to 2 mu M). We propose that Ca2+ activation of a CDPK normally occurs through intramolecular binding of the CaM-LD to the junction. When the junction and CaM-LD are made as two separate polypeptides, the CaM-LD can bind the junction in a Ca2+-dependent fashion with a dissociation constant (K-D) of 6 x 10(-6) M, as determined by kinetic binding analyses. When the junction and CaM-LD are tethered in a single polypeptide (e.g. in protein JC-1), their ability to engage in bimolecular binding is suppressed (e.g. the tethered CaM-LD cannot bind a separate junction). A mutation which disrupts the putative CaM-LD binding sequence (e.g. substitution LRV-1444 to DLPG) appears to block intramolecular binding, as indicated by the restored ability of a tethered CaM-LD to engage in bimolecular binding, This mutation, in the context of a full-length enzyme (mutant KJM4(6H)), appears to block Ca2+ activation. Thus, a disruption of intramolecular binding correlates with a disruption of the Ca2+ activation calmodulin superfamily where a target binding sequence is located within the same polypeptide.
引用
收藏
页码:13222 / 13230
页数:9
相关论文
共 38 条
[1]  
ALEXANDER KA, 1987, J BIOL CHEM, V262, P6108
[2]   PURIFICATION OF A NOVEL CALMODULIN BINDING-PROTEIN FROM BOVINE CEREBRAL-CORTEX MEMBRANES [J].
ANDREASEN, TJ ;
LUETJE, CW ;
HEIDEMAN, W ;
STORM, DR .
BIOCHEMISTRY, 1983, 22 (20) :4615-4618
[3]   A RAPID AND SENSITIVE METHOD FOR DETECTION AND QUANTIFICATION OF CALCINEURIN AND CALMODULIN-BINDING PROTEINS USING BIOTINYLATED CALMODULIN [J].
BILLINGSLEY, ML ;
PENNYPACKER, KR ;
HOOVER, CG ;
BRIGATI, DJ ;
KINCAID, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (22) :7585-7589
[4]   CHARACTERIZATION OF AN ARABIDOPSIS CALMODULIN-LIKE DOMAIN PROTEIN-KINASE PURIFIED FROM ESCHERICHIA-COLI USING AN AFFINITY SANDWICH TECHNIQUE [J].
BINDER, BM ;
HARPER, JF ;
SUSSMAN, MR .
BIOCHEMISTRY, 1994, 33 (08) :2033-2041
[5]   ARABIDOPSIS ETHYLENE-RESPONSE GENE ETR1 - SIMILARITY OF PRODUCT TO 2-COMPONENT REGULATORS [J].
CHANG, C ;
KWOK, SF ;
BLEECKER, AB ;
MEYEROWITZ, EM .
SCIENCE, 1993, 262 (5133) :539-544
[6]   IDENTIFICATION OF CA2+-DEPENDENT MODULATOR PROTEIN AS 4TH SUBUNIT OF RABBIT SKELETAL-MUSCLE PHOSPHORYLASE KINASE [J].
COHEN, P ;
BURCHELL, A ;
FOULKES, JG ;
COHEN, PTW ;
VANAMAN, TC ;
NAIRN, AC .
FEBS LETTERS, 1978, 92 (02) :287-293
[7]   BIOSPECIFIC INTERACTION ANALYSIS USING SURFACE-PLASMON RESONANCE DETECTION APPLIED TO KINETIC, BINDING-SITE AND CONCENTRATION ANALYSIS [J].
FAGERSTAM, LG ;
FROSTELLKARLSSON, A ;
KARLSSON, R ;
PERSSON, B ;
RONNBERG, I .
JOURNAL OF CHROMATOGRAPHY, 1992, 597 (1-2) :397-410
[8]   EUKARYOTIC PROTEINS EXPRESSED IN ESCHERICHIA-COLI - AN IMPROVED THROMBIN CLEAVAGE AND PURIFICATION PROCEDURE OF FUSION PROTEINS WITH GLUTATHIONE-S-TRANSFERASE [J].
GUAN, KL ;
DIXON, JE .
ANALYTICAL BIOCHEMISTRY, 1991, 192 (02) :262-267
[9]   NEURONAL CA2+/CALMODULIN-DEPENDENT PROTEIN-KINASES [J].
HANSON, PI ;
SCHULMAN, H .
ANNUAL REVIEW OF BIOCHEMISTRY, 1992, 61 :559-601
[10]   PSEUDOSUBSTRATE INHIBITION OF CDPK, A PROTEIN-KINASE WITH A CALMODULIN-LIKE DOMAIN [J].
HARMON, AC ;
YOO, BC ;
MCCAFFERY, C .
BIOCHEMISTRY, 1994, 33 (23) :7278-7287