One-step synthesis of highly water-soluble magnetite colloidal nanocrystals

被引:218
作者
Ge, Jianping
Hu, Yonxing
Biasini, Maurizio
Dong, Chungli
Guo, Jinghua
Beyermann, Ward P.
Yin, Yadong [1 ]
机构
[1] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
关键词
hydrolysis; magnetite nanostructures; superparamagnetic properties; water;
D O I
10.1002/chem.200700375
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A high-temperature solution-phase hydrolysis approach has been developed for the synthesis of colloidal magnetite nanocrystals with well-controlled size and size distribution, high crystallinity, and high water solubility. The synthesis was accomplished by the hydrolysis and reduction of iron(III) cations in diethylene glycol with a rapidly injected solution of sodium hydroxide at an elevated temperature. The high reaction temperature allows for control over size and size distribution and yields highly crystalline products. The superior water solubility is achieved by using a polyelectrolyte, that is, poly(acrylic acid) as the capping agent, the carboxylate groups of which partially bind to the nanocrystal surface and partially extend into the surrounding water. The direct synthesis of water-soluble nanocrystals eliminates the need for additional surface modification steps which are usually required for treating hydrophobic nanocrystals produced in nonpolar solvents through the widely recognized pyrolysis route. The abundant carboxylate groups on the nanocrystal surface allow further modifications, such as bioconjugation, as demonstrated by linking cysteamine to the particle surface. The monodisperse, highly water-soluble, superparamagnetic, and biocompatible magnetite nanocrystals should find immediate important biomedical applications.
引用
收藏
页码:7153 / 7161
页数:9
相关论文
共 36 条
[1]   Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study [J].
Babes, L ;
Denizot, B ;
Tanguy, G ;
Le Jeune, JJ ;
Jallet, P .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 212 (02) :474-482
[2]  
Bailey R.E., 2004, CHEM NANOMATERIALS S, V2, P405
[3]   Nanoparticles in cancer therapy and diagnosis [J].
Brigger, I ;
Dubernet, C ;
Couvreur, P .
ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (05) :631-651
[4]   The concept of delayed nucleation in nanocrystal growth demonstrated for the case of iron oxide nanodisks [J].
Casula, MF ;
Jun, YW ;
Zaziski, DJ ;
Chan, EM ;
Corrias, A ;
Alivisatos, AP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1675-1682
[5]   Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures [J].
Cengelli, Feride ;
Maysinger, Dusica ;
Tschudi-Monnet, Florianne ;
Montet, Xavier ;
Corot, Claire ;
Petri-Fink, Alke ;
Hofmann, Heinrich ;
Juillerat-Jeanneret, Lucienne .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2006, 318 (01) :108-116
[6]   Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation [J].
Chen, JP ;
Sorensen, CM ;
Klabunde, KJ ;
Hadjipanayis, GC ;
Devlin, E ;
Kostikas, A .
PHYSICAL REVIEW B, 1996, 54 (13) :9288-9296
[7]   Synthesis of PNIPAM-co-MBAA copolymer nanotubes with composite control [J].
Cui, Yue ;
Tao, Cheng ;
Tian, Ying ;
He, Qiang ;
Li, Junbai .
LANGMUIR, 2006, 22 (19) :8205-8208
[8]   Monodisperse magnetic single-crystal ferrite microspheres [J].
Deng, H ;
Li, XL ;
Peng, Q ;
Wang, X ;
Chen, JP ;
Li, YD .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (18) :2782-2785
[9]   Biofunctional magnetic nanoparticles for protein separation and pathogen detection [J].
Gu, HW ;
Xu, KM ;
Xu, CJ ;
Xu, B .
CHEMICAL COMMUNICATIONS, 2006, (09) :941-949
[10]   FINITE-SIZE MODIFICATIONS OF THE MAGNETIC-PROPERTIES OF CLUSTERS [J].
HENDRIKSEN, PV ;
LINDEROTH, S ;
LINDGARD, PA .
PHYSICAL REVIEW B, 1993, 48 (10) :7259-7273