Monolithic geometric anti-spring blades

被引:55
作者
Cella, G
Sannibale, V
DeSalvo, R
Márka, S
Takamori, A
机构
[1] CALTECH, LIGO Project, Pasadena, CA 91125 USA
[2] Univ Pisa, Pisa, Italy
[3] Univ Tokyo, Tokyo, Japan
基金
美国国家科学基金会;
关键词
gravitational waves detectors; seismic isolation;
D O I
10.1016/j.nima.2004.10.042
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this article we investigate the principle and properties of a vertical passive seismic noise attenuator conceived for ground based gravitational wave interferometers. This mechanical attenuator based on a particular geometry of cantilever blades called monolithic geometric anti springs (MGAS) permits the design of mechanical harmonic oscillators with very low resonant frequency (below 10 mHz). Here we address the theoretical description of the mechanical device, focusing on the most important quantities for the low-frequency regime, on the distribution of internal stresses, and on the thermal stability. In order to obtain physical insight of the attenuator peculiarities, we devise some simplified models, rather than use the brute force of finite element analysis. Those models have been used to optimize the design of a seismic attenuation system prototype for LIGO advanced configurations and for the next generation of the TAMA interferometer. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:502 / 519
页数:18
相关论文
共 14 条
[1]  
[Anonymous], 1996, GEOMETRICAL METHODS
[2]  
[Anonymous], 2000, AUTO2000 CONTINUATIO
[3]   Extending the VIRGO gravitational wave detection band down to a few Hz: metal blade springs and magnetic antisprings [J].
Beccaria, M ;
Bernardini, M ;
Bougleux, E ;
Braccini, S ;
Bradaschia, C ;
Casciano, C ;
Cella, G ;
Cucco, E ;
DAmbrosio, E ;
DeCarolis, G ;
DelFabbro, R ;
DeSalvo, R ;
DiVirgilio, A ;
Ferrante, I ;
Fidecaro, F ;
Flaminio, R ;
Gaddi, A ;
Gennai, A ;
Gennaro, G ;
Giazotto, A ;
Holoway, L ;
LaPenna, P ;
Losurdo, G ;
Malik, S ;
Mancini, S ;
Nicolas, J ;
Palla, F ;
Pan, HB ;
Paoletti, F ;
Pasqualetti, A ;
Passuello, D ;
Poggiani, R ;
Popolizio, P ;
Raffaelli, F ;
Vicere, A ;
Waharte, F ;
Zhang, Z .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 394 (03) :397-408
[4]   The creep problem in the VIRGO suspensions: a possible solution using Maraging steel [J].
Beccaria, M ;
Bernardini, M ;
Braccini, S ;
Bradaschia, C ;
Cagnoli, G ;
Casciano, C ;
Cella, G ;
Cuoco, E ;
Dattilo, V ;
De Carolis, G ;
De Salvo, R ;
Di Virgilio, A ;
Feng, GT ;
Ferrante, I ;
Fidecaro, F ;
Frasconi, F ;
Gaddi, A ;
Gammaitoni, L ;
Gennai, A ;
Giazotto, A ;
Holloway, L ;
Kovalik, J ;
La Penna, P ;
Losurdo, G ;
Malik, S ;
Mancini, S ;
Marchesoni, F ;
Nicolas, J ;
Palla, F ;
Pan, HB ;
Paoletti, F ;
Pasqualetti, A ;
Passuello, D ;
Poggiani, R ;
Popolizio, P ;
Punturo, M ;
Raffaelli, F ;
Rubino, V ;
Valentini, R ;
Vicere, A ;
Waharte, F ;
Zhang, Z .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1998, 404 (2-3) :455-469
[5]   Geometric anti-spring vertical accelerometers for seismic monitoring [J].
Bertolini, A ;
Beverini, N ;
Cella, G ;
DeSalvo, R ;
Fidecaro, F ;
Francesconi, M ;
Simonetti, D .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 518 (1-2) :233-235
[6]   Seismic noise filters, vertical resonance frequency reduction with geometric anti-springs: a feasibility study [J].
Bertolini, A ;
Cella, G ;
DeSalvo, R ;
Sannibale, V .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 435 (03) :475-483
[7]  
Caron B, 1997, CLASSICAL QUANT GRAV, V14, P1461, DOI 10.1088/0264-9381/14/6/011
[8]   Seismic attenuation performance of the first prototype of a geometric anti-spring filter [J].
Cella, G ;
DeSalvo, V ;
Sannibale, V ;
Tariq, H ;
Viboud, N ;
Takamori, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 487 (03) :652-660
[9]  
DOEDEL EJ, INT J BIFURCATION CH, V1, P493
[10]  
Iooss G., 1990, Elementary Stability and Bifurcation Theory, V2nd