Testing the limitations of 2-D companding for strain imaging using phantoms

被引:83
作者
Chaturvedi, P [1 ]
Insana, MF [1 ]
Hall, TJ [1 ]
机构
[1] Univ Kansas, Med Ctr, Dept Radiol, Kansas City, KS 66160 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1109/58.710585
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Companding may be used as a technique for generating low-noise strain images. It involves warping radio-frequency echo fields in two dimensions and at several spatial scales to minimize decorrelation errors in correlation-based displacement estimates. For the appropriate experimental conditions, companding increases the sensitivity and dynamic range of strain images without degrading contrast or spatial resolution significantly. In this paper, we examine the conditions that limit the effectiveness of 2-D local companding through a series of experiments using phantoms with tissue-like acoustic and elasticity properties. We found that strain noise remained relatively unchanged as the applied compression increased to 5% of the phantom height, while target contrast increased in proportion to the compression. Controlling the image noise at high compressions improves target visibility over the broad range induced in elastically heterogeneous media, such as biological tissues. Compressions greater than 5% introduce large strains and complex motions that reduce the effectiveness of companding. Control of boundary conditions and ultrasonic data sampling rates is critical for a successful implementation of our algorithms.
引用
收藏
页码:1022 / 1031
页数:10
相关论文
共 17 条
[1]   CLASS OF ALGORITHMS FOR FAST DIGITAL IMAGE REGISTRATION [J].
BARNEA, DI ;
SILVERMAN, HF .
IEEE TRANSACTIONS ON COMPUTERS, 1972, C 21 (02) :179-+
[2]   EFFECTS OF UNCOMPENSATED RELATIVE-TIME COMPANDING ON A BROAD-BAND CROSS CORRELATOR [J].
BETZ, JW .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (03) :505-510
[3]   Error analysis in acoustic elastography .1. Displacement estimation [J].
Bilgen, M ;
Insana, MF .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 101 (02) :1139-1146
[4]   A NOVEL METHOD FOR ANGLE INDEPENDENT ULTRASONIC-IMAGING OF BLOOD-FLOW AND TISSUE MOTION [J].
BOHS, LN ;
TRAHEY, GE .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1991, 38 (03) :280-286
[5]   ELASTOGRAPHY - ELASTICITY IMAGING USING ULTRASOUND WITH APPLICATION TO MUSCLE AND BREAST IN-VIVO [J].
CESPEDES, I ;
OPHIR, J ;
PONNEKANTI, H ;
MAKLAD, N .
ULTRASONIC IMAGING, 1993, 15 (02) :73-88
[6]   REDUCTION OF IMAGE NOISE IN ELASTOGRAPHY [J].
CESPEDES, I ;
OPHIR, J .
ULTRASONIC IMAGING, 1993, 15 (02) :89-102
[7]   2-D companding for noise reduction in strain imaging [J].
Chaturvedi, P ;
Insana, MF ;
Hall, TJ .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1998, 45 (01) :179-191
[8]   ELASTICITY IMAGING FOR EARLY DETECTION OF RENAL PATHOLOGY [J].
EMELIANOV, SY ;
LUBINSKI, MA ;
WEITZEL, WF ;
WIGGINS, RC ;
SKOVORODA, AR ;
ODONNELL, M .
ULTRASOUND IN MEDICINE AND BIOLOGY, 1995, 21 (07) :871-883
[9]   Elastography of breast lesions: Initial clinical results [J].
Garra, BS ;
Cespedes, EI ;
Ophir, J ;
Spratt, SR ;
Zuurbier, RA ;
Magnant, CM ;
Pennanen, MF .
RADIOLOGY, 1997, 202 (01) :79-86
[10]   Phantom materials for elastography [J].
Hall, TJ ;
Bilgen, M ;
Insana, MF ;
Krouskop, TA .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1997, 44 (06) :1355-1365