Fuel Cell Engineering: Toward the Design of Efficient Electrochemical Power Plants

被引:75
作者
Sundmacher, Kai [1 ,2 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, D-39106 Magdeburg, Germany
[2] Otto VonGuericke Univ Magdegurg, D-39106 Magdeburg, Germany
关键词
POLYMER ELECTROLYTE MEMBRANE; CATHODE CATALYST LAYER; ANION-EXCHANGE MEMBRANES; PROTON-CONDUCTING MEMBRANES; OXYGEN-REDUCTION CATALYSTS; LINKED IONOMER MEMBRANES; ENZYMATIC BIOFUEL CELLS; GAS-DIFFUSION LAYER; COMPOSITE MEMBRANES; LOW-TEMPERATURE;
D O I
10.1021/ie100902t
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Fuel cells are electrochemical membrane reactors that are able to convert chemically stored energy directly to electrical energy at high thermodynamic efficiencies. The present paper summarizes the current status and the future needs in fuel cell science and engineering. In the first part, possible primary fuels, alternative fuel processing pathways, and conceptual design aspects of fuel cell systems are discussed. In the second part, important trends in the development of functional materials for the preparation of stable high-performance fuel cells with extended longevity are presented. Thereby, different types of fuel cells are discussed, namely, enzymatic fuel cells (EFCs), alkaline fuel cells (AFCs), polymer electrolyte fuel cells (PEFCs), direct methanol fuel cells (DMFCs), direct ethanol fuel cells (DEFCs), phosphoric acid fuel cells (PAFCs), molten carbonate fuel cells (MCFCs), and solid oxide fuel cells (SOFCs).
引用
收藏
页码:10159 / 10182
页数:24
相关论文
共 372 条
[1]  
Acosta M, 2006, J POWER SOURCES, V159, P1123, DOI 10.1016/j.jpowsour.2005.12.068
[2]   A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell [J].
Adams, Latifah A. ;
Poynton, Simon D. ;
Tamain, Christelle ;
Slade, Robert C. T. ;
Varcoe, John R. .
CHEMSUSCHEM, 2008, 1 (1-2) :79-81
[3]   Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140° C [J].
Adjemian, KT ;
Lee, SJ ;
Srinivasan, S ;
Benziger, J ;
Bocarsly, AB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (03) :A256-A261
[4]   The use of a solid polymer electrolyte in alkaline fuel cells. [J].
Agel, É ;
Bouet, J ;
Fauvarque, JF ;
Yassir, H .
ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2001, 26 (04) :59-68
[5]   Characterization and use of anionic membranes for alkaline fuel cells [J].
Agel, E ;
Bouet, J ;
Fauvarque, JF .
JOURNAL OF POWER SOURCES, 2001, 101 (02) :267-274
[6]  
AKROUR L, 2005, PHD CNAM PARIS
[7]   On the origin of the selectivity of oxygen reduction of ruthenium-containing electrocatalysts in methanol-containing electrolyte [J].
Alonso-Vante, N ;
Bogdanoff, P ;
Tributsch, H .
JOURNAL OF CATALYSIS, 2000, 190 (02) :240-246
[8]   PARAMETRIC MODELING OF THE PERFORMANCE OF A 5-KW PROTON-EXCHANGE MEMBRANE FUEL-CELL STACK [J].
AMPHLETT, JC ;
BAUMERT, RM ;
MANN, RF ;
PEPPLEY, BA ;
ROBERGE, PR ;
RODRIGUES, A .
JOURNAL OF POWER SOURCES, 1994, 49 (1-3) :349-356
[9]   A model predicting transient responses of proton exchange membrane fuel cells [J].
Amphlett, JC ;
Mann, RF ;
Peppley, BA ;
Roberge, PR ;
Rodrigues, A .
JOURNAL OF POWER SOURCES, 1996, 61 (1-2) :183-188
[10]  
AMPHLETT JC, 1995, J ELECTROCHEM SOC, V142, P1, DOI 10.1149/1.2043866