Alignment and algebraically special tensors in Lorentzian geometry

被引:103
作者
Milson, R [1 ]
Coley, A
Pravda, V
Pravdová, A
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
[2] Acad Sci Czech Republ, Math Inst, Prague 11567 1, Czech Republic
基金
加拿大自然科学与工程研究理事会;
关键词
tensor classification; Lorentz geometry; alignment; Weyl tensor;
D O I
10.1142/S0219887805000491
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a dimension-independent theory of alignment in Lorentzian geometry, and apply it to the tensor classification problem for the Weyl and Ricci tensors. First, we show that the alignment condition is equivalent to the principal null direction equation. In 4 dimensions this recovers the usual Petrov types are recovered. For higher dimensions we prove that, in general, a Weyl tensor does not possess any aligned directions. We then go on to describe a number of additional algebraic types for the various alignment configurations. For the case of second-order symmetric (Ricci) tensors, we perform the classification by considering the geometric properties of the corresponding alignment variety.
引用
收藏
页码:41 / 61
页数:21
相关论文
共 16 条
[1]  
Beardon A. F., 1983, GEOMETRY DISCRETE GR
[2]  
CARMELI M, 1977, GROUP THEORY GENERAL
[3]   Vanishing scalar invariant spacetimes in higher dimensions [J].
Coley, A ;
Milson, R ;
Pravda, V ;
Pravdová, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (23) :5519-5542
[4]   Classification of the Weyl tensor in higher dimensions [J].
Coley, A ;
Milson, R ;
Pravda, V ;
Pravdová, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (07) :L35-L41
[5]   Generalizations of pp-wave spacetimes in higher dimensions -: art. no. 104020 [J].
Coley, A ;
Milson, R ;
Pelavas, N ;
Pravda, V ;
Pravdová, A ;
Zalaletdinov, R .
PHYSICAL REVIEW D, 2003, 67 (10)
[6]  
De Smet PJ, 2002, CLASSICAL QUANT GRAV, V19, P4877, DOI 10.1088/0264-9381/19/19/307
[7]  
EISENBUD D, 2000, GEOMETRY SCHEMES
[8]  
Goldberg JN, 1962, ACTA PHYS POL A, V22, P434, DOI DOI 10.1007/S10714-008-0722-5
[9]  
Hertrich-Jeromin Udo, 2003, Introduction to Mobius Differential Geometry
[10]  
Kramer D., 2003, EXACT SOLUTIONS EINS