Development of multifunctional photoactive self-cleaning glasses

被引:105
作者
Zhao, Xiujian [1 ]
Zhao, Qingnan [1 ]
Yu, Jiaguo [1 ]
Liu, Baoshun [1 ]
机构
[1] Wuhan Univ Technol, Minist Educ, Key Lab Silicate Mat Sci & Engn, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
photocatalysis; sputtering; photoinduced effects;
D O I
10.1016/j.jnoncrysol.2006.10.093
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Glasses for architecture must have many functions in addition to their transparency. For example, the glasses with the functions, of self-cleaning, light control, UV reduction, anti-bacterial, energy conversion, and so on, will be used in buildings in the near future. This paper reviews some results on multifunctional photoactive glasses based on multi-layer coatings containing TiO2 film and other functional coatings developed by us recently. The self-cleaning of glasses can be realized by coating the photoinduced super-hydrophilic nanoporous thin films based on TiO2 photocatalysts via sol-gel route. A new method to enhance the photocatalytic activity of TiO2 thin films direct coated on soda-lime glass was developed by treating the films in acidic solutions. The films also have good photoinduced antibacterial properties. The doping of a small amount of silver into the TiO2 porous film can enhance its anti-bacteria effect without UV light irradiation. The TiO2 thin films by appropriate heat-treatment can operate as self-cleaning glass in the visible light region. The UV reduction self-cleaning glasses are prepared by magnetron sputtering two layers of TiO2-CeO2 and TiO2 thin films on soda-lime glasses. The TiO2-CeO2 thin films can cut all of UV light through adjusting the ratio of TiO2 and CeO2. The TiO2/TiN/TiO2 type multi-layer coated on glass substrate can act as low-E self-cleaning glass. The potential water-repellent coating based on TiO2 is discussed finally. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1424 / 1430
页数:7
相关论文
共 39 条
[1]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[2]   OPTICAL PROPERTIES AND BAND STRUCTURE OF WURTZITE-TYPE CRYSTALS AND RUTILE [J].
CARDONA, M ;
HARBEKE, G .
PHYSICAL REVIEW, 1965, 137 (5A) :1467-+
[3]   Photoinduced reactivity of titanium dioxide [J].
Carp, O ;
Huisman, CL ;
Reller, A .
PROGRESS IN SOLID STATE CHEMISTRY, 2004, 32 (1-2) :33-177
[4]  
Chen XH, 2004, CHEM J CHINESE U, V25, P2304
[5]   Morphological and structural study of plasma deposited fluorocarbon films at different thicknesses [J].
Cicala, G ;
Milella, A ;
Palumbo, E ;
Favia, P ;
d'Agostino, R .
DIAMOND AND RELATED MATERIALS, 2003, 12 (10-11) :2020-2025
[6]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229
[7]  
Feng L, 2002, ANGEW CHEM INT EDIT, V41, P1221, DOI 10.1002/1521-3773(20020402)41:7<1221::AID-ANIE1221>3.0.CO
[8]  
2-G
[9]   Creation of a superhydrophobic surface from an amphiphilic polymer [J].
Feng, L ;
Song, YL ;
Zhai, J ;
Liu, BQ ;
Xu, J ;
Jiang, L ;
Zhu, DB .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (07) :800-802
[10]   Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J].
Feng, XJ ;
Feng, L ;
Jin, MH ;
Zhai, J ;
Jiang, L ;
Zhu, DB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (01) :62-63