Toward a neutral evolutionary model of gene expression

被引:84
作者
Khaitovich, P
Pääbo, S
Weiss, G
机构
[1] Univ Dusseldorf, WE Informat, D-40225 Dusseldorf, Germany
[2] Max Planck Inst Evolutionary Anthropol, D-04103 Leipzig, Germany
关键词
D O I
10.1534/genetics.104.037135
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We introduce a stochastic model that describes neutral changes of gene expression over evolutionary time as a compound Poisson process where evolutionary events cause changes of expression level according to a given probability distribution. The model produces simple estimators for model parameters and allows discrimination between symmetric and asymmetric distributions of evolutionary expression changes along an evolutionary lineage. Furthermore, we introduce two measures, the skewness of expression difference distributions and relative difference of evolutionary branch lengths, which are used to quantify deviation from clock-like behavior of gene expression distances. Model-based analyses of gene expression profiles in primate liver and brain samples yield the following results: (1) The majority of gene expression changes are consistent with a neutral model of evolution; (2) along evolutionary lineages, upward changes in expression are less frequent but of greater average magnitude than downward changes; and (3) the skewness measure and the relative branch length difference confirm that an acceleration of gene expression evolution occurred on the human lineage in brain but not in liver. We discuss the latter result with respect to a neutral model of transcriptome evolution and show that a small number of genes expressed in brain can account for the observed data.
引用
收藏
页码:929 / 939
页数:11
相关论文
共 29 条
[1]  
Balding D, 2003, HDB STAT GENETICS
[2]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[3]   Elevated gene expression levels distinguish human from non-human primate brains [J].
Cáceres, M ;
Lachuer, J ;
Zapala, MA ;
Redmond, JC ;
Kudo, L ;
Geschwind, DH ;
Lockhart, DJ ;
Preuss, TM ;
Barlow, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (22) :13030-13035
[4]   Natural variation in human gene expression assessed in lymphoblastoid cells [J].
Cheung, VG ;
Conlin, LK ;
Weber, TM ;
Arcaro, M ;
Jen, KY ;
Morley, M ;
Spielman, RS .
NATURE GENETICS, 2003, 33 (03) :422-425
[5]  
DURRETT R, 2002, PROBABILITY MODELS D
[6]  
Edwards A. W. F., 1964, PHENETIC PHYLOGENETI, P67
[7]   Intra- and interspecific variation in primate gene expression patterns [J].
Enard, W ;
Khaitovich, P ;
Klose, J ;
Zöllner, S ;
Heissig, F ;
Giavalisco, P ;
Nieselt-Struwe, K ;
Muchmore, E ;
Varki, A ;
Ravid, R ;
Doxiadis, GM ;
Bontrop, RE ;
Pääbo, S .
SCIENCE, 2002, 296 (5566) :340-343
[8]  
Feller W., 1957, INTRO PROBABILITY TH, VI
[9]  
FELSENSTEIN J, 1973, AM J HUM GENET, V25, P471
[10]   Estimation of divergence times for major lineages of primate species [J].
Glazko, GV ;
Nei, M .
MOLECULAR BIOLOGY AND EVOLUTION, 2003, 20 (03) :424-434