Predictive neural networks for gene expression data analysis

被引:48
作者
Tan, AH
Pan, H
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
[2] Genome Inst Singapore, Singapore 138672, Singapore
关键词
knowledge discovery; gene expression analysis; predictive modelling; rule extraction; feature selection;
D O I
10.1016/j.neunet.2005.01.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gene expression data generated by DNA microarray experiments have provided a vast resource for medical diagnosis and disease understanding. Most prior work in analyzing gene expression data, however, focuses on predictive performance but not so much on deriving human understandable knowledge. This paper presents a systematic approach for learning and extracting rule-based knowledge from gene expression data. A class of predictive self-organizing networks known as Adaptive Resonance Associative Map (ARAM) is used for modelling gene expression data, whose learned knowledge can be transformed into a set of symbolic IF-THEN rules for interpretation. For dimensionality reduction, we illustrate how the system can work with a variety of feature selection methods. Benchmark experiments conducted on two gene expression data sets from acute leukemia and colon tumor patients show that the proposed system consistently produces predictive performance comparable, if not superior, to all previously published results. More importantly, very simple rules can be discovered that have extremely high diagnostic power. The proposed methodology, consisting of dimensionality reduction, predictive modelling, and rule extraction, provides a promising approach to gene expression analysis and disease understanding. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 23 条
[1]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[2]  
[Anonymous], 1993, P 13 INT JOINT C ART
[3]   Tissue classification with gene expression profiles [J].
Ben-Dor, A ;
Bruhn, L ;
Friedman, N ;
Nachman, I ;
Schummer, M ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) :559-583
[4]  
Bishop C. M., 1996, Neural networks for pattern recognition
[5]  
Carpenter G. A., 1995, Connection Science, V7, P3, DOI 10.1080/09540099508915655
[6]   FUZZY ARTMAP - A NEURAL NETWORK ARCHITECTURE FOR INCREMENTAL SUPERVISED LEARNING OF ANALOG MULTIDIMENSIONAL MAPS [J].
CARPENTER, GA ;
GROSSBERG, S ;
MARKUZON, N ;
REYNOLDS, JH ;
ROSEN, DB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (05) :698-713
[7]   ARTMAP - SUPERVISED REAL-TIME LEARNING AND CLASSIFICATION OF NONSTATIONARY DATA BY A SELF-ORGANIZING NEURAL NETWORK [J].
CARPENTER, GA ;
GROSSBERG, S ;
REYNOLDS, JH .
NEURAL NETWORKS, 1991, 4 (05) :565-588
[8]  
CARPENTER GA, 1993, WORLD C NEURAL NETWO, V3, P649
[9]   Support vector machine classification and validation of cancer tissue samples using microarray expression data [J].
Furey, TS ;
Cristianini, N ;
Duffy, N ;
Bednarski, DW ;
Schummer, M ;
Haussler, D .
BIOINFORMATICS, 2000, 16 (10) :906-914
[10]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537