Nonlinear dimensionality reduction by locally linear embedding

被引:10601
作者
Roweis, ST
Saul, LK
机构
[1] UCL, Gatsby Computat Neurosci Unit, London WC1N 3AR, England
[2] AT&T Lab Res, Florham Pk, NJ 07932 USA
关键词
D O I
10.1126/science.290.5500.2323
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many areas of science depend on exploratory data analysis and visualization. The need to analyze Large amounts of multivariate data raises the fundamental problem of dimensionality reduction: how to discover compact representations of high-dimensional data. Here, we introduce Locally Linear embedding (LLE), an unsupervised Learning algorithm that computes Low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs. Unlike clustering methods for Local dimensionality reduction, LLE maps its inputs into a single global coordinate system of lower dimensionality, and its optimizations do not involve Local minima. By exploiting the local symmetries of Linear reconstructions, LLE is able to Learn the global structure of nonlinear manifolds, such as those generated by images of faces or documents of text.
引用
收藏
页码:2323 / +
页数:5
相关论文
共 19 条
[1]  
[Anonymous], 1988, SELF ORG ASS MEMORY
[2]  
Bai Z., 2000, TEMPLATES SOLUTION A, DOI DOI 10.1137/1.9780898719581
[3]   Image representations for visual learning [J].
Beymer, D ;
Poggio, T .
SCIENCE, 1996, 272 (5270) :1905-1909
[4]   GTM: The generative topographic mapping [J].
Bishop, CM ;
Svensen, M ;
Williams, CKI .
NEURAL COMPUTATION, 1998, 10 (01) :215-234
[5]  
Cox T. F., 1994, MULTIDIMENSIONAL SCA
[6]  
DeMers D., 1993, Advances in Neural Information Processing Systems, P580
[7]   ANALYSIS OF ADDITIVE DEPENDENCIES AND CONCURVITIES USING SMALLEST ADDITIVE PRINCIPAL COMPONENTS [J].
DONNELL, DJ ;
BUJA, A ;
STUETZLE, W .
ANNALS OF STATISTICS, 1994, 22 (04) :1635-1668
[8]   PRINCIPAL CURVES [J].
HASTIE, T ;
STUETZLE, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (406) :502-516
[9]  
Horn R. A., 1990, MATRIX ANAL
[10]  
Jolliffe IT., 2005, PRINCIPAL COMPONENT, V44, P6486