Electrospun Alginate Nanofibers with Controlled Cell Adhesion for Tissue Engineering

被引:116
作者
Jeong, Sung In [1 ]
Krebs, Melissa D. [1 ]
Bonino, Christopher A. [2 ]
Khan, Saad A. [2 ]
Alsberg, Eben [1 ,3 ]
机构
[1] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[2] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[3] Case Western Reserve Univ, Dept Orthopaed Surg, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
biomaterials; cell adhesion; electrospinning; nanofibers; tissue engineering; SODIUM ALGINATE; POLY(ETHYLENE OXIDE); HYDROGELS; DEGRADATION; SCAFFOLDS; BEHAVIOR; MATRIX;
D O I
10.1002/mabi.201000046
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alginate, a natural polysaccharide that has shown great potential as a cell scaffold for the regeneration of many tissues, has only been nominally explored as an electrospun biomaterial due to cytotoxic chemicals that have typically been used during nanofiber formation and crosslinking. Alginate cannot be electrospun by itself and is often co-spun with poly(ethylene oxide) (PEO). In this work, a cell adhesive peptide (GRGDSP) modified alginate (RA) and unmodified alginate (UA) were blended with PEO at different concentrations and blending ratios, and then electrospun to prepare uniform nanofibers. The ability of electrospun RA scaffolds to support human dermal fibroblast cell attachment, spreading, and subsequent proliferation was greatly enhanced on the adhesion ligand-modified nanofibers, demonstrating the promise of this electrospun polysaccharide material with defined nanoscale architecture and cell adhesive properties for tissue regeneration applications.
引用
收藏
页码:934 / 943
页数:10
相关论文
共 25 条
[1]   Regulating bone formation via controlled scaffold degradation [J].
Alsberg, E ;
Kong, HJ ;
Hirano, Y ;
Smith, MK ;
Albeiruti, A ;
Mooney, DJ .
JOURNAL OF DENTAL RESEARCH, 2003, 82 (11) :903-908
[2]   Engineering growing tissues [J].
Alsberg, E ;
Anderson, KW ;
Albeiruti, A ;
Rowley, JA ;
Mooney, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12025-12030
[3]   Cell-interactive alginate hydrogels for bone tissue engineering [J].
Alsberg, E ;
Anderson, KW ;
Albeiruti, A ;
Franceschi, RT ;
Mooney, DJ .
JOURNAL OF DENTAL RESEARCH, 2001, 80 (11) :2025-2029
[4]   Advancing tissue engineering by using electrospun nanofibers [J].
Ashammakhi, Nureddin ;
Ndreu, A. ;
Nikkola, L. ;
Wimpenny, I. ;
Yang, Y. .
REGENERATIVE MEDICINE, 2008, 3 (04) :547-574
[5]   Alginate hydrogels as biomaterials [J].
Augst, Alexander D. ;
Kong, Hyun Joon ;
Mooney, David J. .
MACROMOLECULAR BIOSCIENCE, 2006, 6 (08) :623-633
[6]   Alginate-based nanofibrous scaffolds: Structural, mechanical, and biological properties [J].
Bhattarai, Narayan ;
Li, Zhensheng ;
Edmondson, Dennis ;
Zhang, Miqin .
ADVANCED MATERIALS, 2006, 18 (11) :1463-+
[7]   Controlled synthesis and structural stability of alginate-based nanofibers [J].
Bhattarai, Narayan ;
Zhang, Miqin .
NANOTECHNOLOGY, 2007, 18 (45)
[8]   Degradation of partially oxidized alginate and its potential application for tissue engineering [J].
Bouhadir, KH ;
Lee, KY ;
Alsberg, E ;
Damm, KL ;
Anderson, KW ;
Mooney, DJ .
BIOTECHNOLOGY PROGRESS, 2001, 17 (05) :945-950
[9]   The role of electrospinning in the emerging field of nanomedicine [J].
Chew, S. Y. ;
Wen, Y. ;
Dzenis, Y. ;
Leong, K. W. .
CURRENT PHARMACEUTICAL DESIGN, 2006, 12 (36) :4751-4770
[10]   USE OF AN AQUEOUS SOLUBLE TETRAZOLIUM FORMAZAN ASSAY FOR CELL-GROWTH ASSAYS IN CULTURE [J].
CORY, AH ;
OWEN, TC ;
BARLTROP, JA ;
CORY, JG .
CANCER COMMUNICATIONS, 1991, 3 (07) :207-212