Real-parameter quantum evolutionary algorithm for economic load dispatch

被引:62
作者
Babu, G. S. Sailesh [1 ]
Das, D. Bhagwan [1 ]
Patvardhan, C. [1 ]
机构
[1] Deemed Univ, Fac Engn, Dayalbagh Educ Inst, Dept Elect Engn, Agra 282005, Uttar Pradesh, India
关键词
Evolutionary algorithms - Optimization - Quantum computers;
D O I
10.1049/iet-gtd:20060495
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel real-parameter optimisation algorithm called the 'real-parameter quantum evolutionary algorithm' is presented. The algorithm pieces together the ideas from evolutionary algorithms (EA) and quantum computing to provide a robust optimisation technique that can be utilised to optimise highly constrained non-linear real-parameter functions. Quantum bits have immense representational power due to their being in superposition of all the basic states at the same time. New quantum operators designed in this work enable the search to effectively handle the twin objectives of exploitation and exploration. This enables the search to be pursued with small population sizes, thereby speeding up the search process and also ensuring that there is no problem of premature convergence that often plagues pure EA implementations. The power of the proposed algorithm is demonstrated by solving the economic load dispatch (ELD) in power systems. ELD is to find the optimal loadings on the generators so as to achieve minimum operating cost while satisfying various system and unit-level constraints. The proposed method has been applied to standard load dispatch problems reported in the literature including the IEEE 30 bus system, IEEE 57 bus system and a 110-generator problem, and its performance has been compared with the results obtained by other methods. The results adequately demonstrate the enhanced search power of the proposed algorithm in terms of obtaining better solutions and provide motivation for its application to other real-parameter optimisation problems in power systems.
引用
收藏
页码:22 / 31
页数:10
相关论文
共 21 条
[1]   Environmental/economic power dispatch using multiobjective evolutionary algorithms [J].
Abido, MA .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (04) :1529-1537
[2]   A novel multiobjective evolutionary algorithm or environmental/economic power dispatch [J].
Abido, MA .
ELECTRIC POWER SYSTEMS RESEARCH, 2003, 65 (01) :71-81
[3]   A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch [J].
Abido, MA .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2003, 25 (02) :97-105
[4]  
BABU GSS, 2002, IE I J EL, V83, P222
[5]  
Balamurugan R., 2007, INT J COMPUTER SCI E, V1, P10
[6]   New multi-objective stochastic search technique for economic load dispatch [J].
Das, DB ;
Patvardhan, C .
IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 1998, 145 (06) :747-752
[7]   Dynamics of diesel and wind turbine generators on an isolated power system [J].
Das, D ;
Aditya, SK ;
Kothari, DP .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1999, 21 (03) :183-189
[8]   ECONOMIC LOAD DISPATCH MULTIOBJECTIVE OPTIMIZATION PROCEDURES USING LINEAR-PROGRAMMING TECHNIQUES [J].
FARAG, A ;
ALBAIYAT, S ;
CHENG, TC .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (02) :731-738
[9]   Quantum-inspired evolutionary algorithms with a new termination criterion, Hε gate, and two-phase scheme [J].
Han, KH ;
Kim, JH .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (02) :156-169
[10]   Quantum-inspired evolutionary algorithm for a class of combinatorial optimization [J].
Han, KH ;
Kim, JH .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (06) :580-593