Structure of the Dengue virus helicase/nucleoside triphosphatase catalytic domain at a resolution of 2.4 Å

被引:175
作者
Xu, T
Sampath, A
Chao, A
Wen, DY
Nanao, M
Chene, P
Vasudevan, SG
Lescar, J
机构
[1] Nanyang Technol Univ, Sch Biol Sci, Singapore 637551, Singapore
[2] Novartis Inst Trop Dis, Singapore 138670, Singapore
[3] Novartis Inst Biomed Res, Dept Oncol, CH-4002 Basel, Switzerland
[4] EMBL, Grenoble Outstn, F-38043 Grenoble, France
关键词
D O I
10.1128/JVI.79.16.10278-10288.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Dengue fever is an important emerging public health concern, with several million viral infections occurring annually, for which no effective therapy currently exists. The NS3 protein from Dengue virus is a multifunctional protein of 69 kDa, endowed with protease, helicase, and nucleoside 5'-triphosphatase (NTPase) activities. Thus, NS3 plays an important role in viral replication and represents a very interesting target for the development of specific antiviral inhibitors. We present the structure of an enzymatically active fragment of the Dengue virus NTPase/helicase catalytic domain to 2.4 angstrom resolution. The structure is composed of three domains, displays an asymmetric distribution of charges on its surface, and contains a tunnel large enough to accommodate single-stranded RNA. Its C-terminal domain adopts a new fold compared to the NS3 helicase of hepatitis C virus, which has interesting implications for the evolution of the Flaviviridae replication complex. A bound sulfate ion reveals residues involved in the metal-dependent NTPase catalytic mechanism. Comparison with the NS3 hepatitis C virus hellicase complexed to single-stranded DNA would place the 3' single-stranded tail of a nucleic acid duplex in the tunnel that runs across the basic face of the protein. A possible model for the unwinding mechanism is proposed.
引用
收藏
页码:10278 / 10288
页数:11
相关论文
共 49 条
[1]   A dissection of specific and non-specific protein - Protein interfaces [J].
Bahadur, RP ;
Chakrabarti, P ;
Rodier, F ;
Janin, J .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 336 (04) :943-955
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   Expression, purification, and characterization of the RNA 5′-triphosphatase activity of dengue virus type 2 nonstructural protein 3 [J].
Bartelma, G ;
Padmanabhan, R .
VIROLOGY, 2002, 299 (01) :122-132
[4]   The RNA helicase, nucleotide 5′-triphosphatase, and RNA 5′-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core [J].
Benarroch, D ;
Selisko, B ;
Locatelli, GA ;
Maga, G ;
Romette, JL ;
Canard, B .
VIROLOGY, 2004, 328 (02) :208-218
[5]   Purification and characterization of West Nile virus nucleoside triphosphatase (NTPase)/helicase: Evidence for dissociation of the NTPase and helicase activities of the enzyme [J].
Borowski, P ;
Niebuhr, A ;
Mueller, O ;
Bretner, M ;
Felczak, K ;
Kulikowski, T ;
Schmitz, H .
JOURNAL OF VIROLOGY, 2001, 75 (07) :3220-3229
[6]   The interdomain region of dengue NS5 protein that binds to the viral helicase NS3 contains independently functional importin β1 and importin α/β-recognized nuclear localization signals [J].
Brooks, AJ ;
Johansson, M ;
John, AV ;
Xu, YB ;
Jans, DA ;
Vasudevan, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (39) :36399-36407
[7]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[8]   Helicase structure and mechanism [J].
Caruthers, JM ;
McKay, DB .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (01) :123-133
[9]   MUTAGENESIS OF THE YELLOW-FEVER VIRUS NS2B PROTEIN - EFFECTS ON PROTEOLYTIC PROCESSING, NS2B-NS3 COMPLEX-FORMATION, AND VIRAL REPLICATION [J].
CHAMBERS, TJ ;
NESTOROWICZ, A ;
AMBERG, SM ;
RICE, CM .
JOURNAL OF VIROLOGY, 1993, 67 (11) :6797-6807
[10]   Crystal structure of RNA helicase from genotype 1b hepatitis C virus - A feasible mechanism of unwinding duplex RNA [J].
Cho, HS ;
Ha, NC ;
Kang, LW ;
Chung, KM ;
Back, SH ;
Jang, SK ;
Oh, BH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (24) :15045-15052