Diversity of functional astroglial properties in the respiratory network

被引:77
作者
Grass, D
Pawlowski, PG
Hirrlinger, J
Papadopoulos, N
Richter, DW
Kirchhoff, F
Hülsmann, S
机构
[1] Univ Gottingen, Ctr Physiol & Pathophysiol, Dept Neuro & Sensory Physiol, D-37073 Gottingen, Germany
[2] Max Planck Inst Expt Med, Dept Neurogenet, D-37075 Gottingen, Germany
[3] DFG Res Ctr Mol Physiol Brain, D-37073 Gottingen, Germany
基金
英国惠康基金;
关键词
brainstem; GFAP (glial fibrillary acidic protein); EGFP; glutamate; potassium (K); neuron-glia interaction;
D O I
10.1523/JNEUROSCI.4022-03.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A population of neurons in the caudal medulla generates the rhythmic activity underlying breathing movements. Although this neuronal network has attracted great attention for studying neuronal aspects of synaptic transmission, functions of glial cells supporting this neuronal activity remain unclear. To investigate the role of astrocytes in the respiratory network, we applied electrophysiological and immunohistochemical techniques to characterize astrocytes in regions involved in the generation and transmission of rhythmic activity. In the ventral respiratory group and the hypoglossal nucleus (XII) of acutely isolated brainstem slices, we analyzed fluorescently labeled astrocytes obtained from TgN(GFAP-EGFP) transgenic mice with the whole-cell voltage-clamp technique. Three subpopulations of astrocytes could be discerned by their distinct membrane current profiles. A first group of astrocytes was characterized by nonrectifying, symmetrical and voltage-independent potassium currents and a robust glutamate transporter response to D-aspartate. A second group of astrocytes showed additional A-type potassium currents, whereas a third group, identified by immunolabeling for the glial progenitor marker NG2, expressed outwardly rectifying potassium currents, smaller potassium inward currents, and only minimal D-aspartate-induced transporter currents. Astrocytes of all groups showed kainate-induced inward currents. We conclude that most of the astrocytes serve as a buffer system of excess extracellular glutamate and potassium; however, a distinct cell population (NG2-positive, A-type potassium currents) may play an important role for network plasticity.
引用
收藏
页码:1358 / 1365
页数:8
相关论文
共 42 条
[1]   Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons [J].
Belachew, S ;
Chittajallu, R ;
Aguirre, AA ;
Yuan, XQ ;
Kirby, M ;
Anderson, S ;
Gallo, V .
JOURNAL OF CELL BIOLOGY, 2003, 161 (01) :169-186
[2]  
Bordey A, 2000, GLIA, V30, P27, DOI 10.1002/(SICI)1098-1136(200003)30:1<27::AID-GLIA4>3.0.CO
[3]  
2-#
[4]   MICROENVIRONMENT OF RESPIRATORY NEURONS IN THE INVITRO BRAIN-STEM-SPINAL CORD OF NEONATAL RATS [J].
BROCKHAUS, J ;
BALLANYI, K ;
SMITH, JC ;
RICHTER, DW .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 462 :421-445
[5]   Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices [J].
Clark, BA ;
Barbour, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 502 (02) :335-350
[6]   Respiratory rhythm: An emergent network property? [J].
Del Negro, CA ;
Morgado-Valle, C ;
Feldman, JL .
NEURON, 2002, 34 (05) :821-830
[7]   AN2/NG2 protein-expressing glial progenitor cells in the murine CNS: Isolation, differentiation, and association with radial glia [J].
Diers-Fenger, M ;
Kirchhoff, F ;
Kettenmann, H ;
Levine, JM ;
Trotter, J .
GLIA, 2001, 34 (03) :213-228
[8]  
Dong XW, 1999, J NEUROSCI, V19, P5173
[9]   A THIN SLICE PREPARATION FOR PATCH CLAMP RECORDINGS FROM NEURONS OF THE MAMMALIAN CENTRAL NERVOUS-SYSTEM [J].
EDWARDS, FA ;
KONNERTH, A ;
SAKMANN, B ;
TAKAHASHI, T .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1989, 414 (05) :600-612
[10]   Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes [J].
Filippov, V ;
Kronenberg, G ;
Pivneva, T ;
Reuter, K ;
Steiner, B ;
Wang, LP ;
Yamaguchi, M ;
Kettenmann, H ;
Kempermann, G .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2003, 23 (03) :373-382