Solution for the dynamics of the BCS and central spin problems

被引:111
作者
Yuzbashyan, EA [1 ]
Altshuler, BL
Kuznetsov, VB
Enolskii, VZ
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] NEC Res Inst, Princeton, NJ 08540 USA
[3] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
[4] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 36期
关键词
D O I
10.1088/0305-4470/38/36/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop an explicit description of a time-dependent response of fermionic condensates to perturbations. The dynamics of Cooper pairs at times shorter than the energy relaxation time can be described by the BCS model. We obtain a general explicit solution for the dynamics of the BCS model. We also solve a closely related dynamical problem-the central spin model, which describes a localized spin coupled to a 'spin bath'. Here, we focus on presenting the solution and describing its general properties, but also mention some applications, e.g. to nonstationary pairing in cold Fermi gases and to the issue of electron spin decoherence in quantum dots. A typical dynamics of the BCS and central spin models is quasi-periodic with a large number of frequencies and stable under small perturbations. We show that for certain special initial conditions the number of frequencies decreases and the solution simplifies. In particular, periodic solutions correspond to the ground state and excitations of the BCS model.
引用
收藏
页码:7831 / 7849
页数:19
相关论文
共 49 条
[1]   On the weak Kowalevski-Painleve property for hyperelliptically separable systems [J].
Abenda, S ;
Fedorov, Y .
ACTA APPLICANDAE MATHEMATICAE, 2000, 60 (02) :137-178
[2]   TIME VARIATION OF GINZBURG-LANDAU ORDER PARAMETER [J].
ABRAHAMS, E ;
TSUNETO, T .
PHYSICAL REVIEW, 1966, 152 (01) :416-+
[3]  
ALTSHULER BL, UNPUB
[4]   RANDOM-PHASE APPROXIMATION IN THE THEORY OF SUPERCONDUCTIVITY [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 112 (06) :1900-1916
[5]   THEORY OF DIRTY SUPERCONDUCTORS [J].
ANDERSON, PW .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1959, 11 (1-2) :26-30
[6]  
[Anonymous], 2002, J MATH SCI-U TOKYO, DOI 10.1023/A:1012800600
[7]  
[Anonymous], 2001, J MATH SCI-U TOKYO, DOI 10.1023/A:1011983313
[8]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[9]  
Aronov A. G., 1986, NONEQUILIBRIUM SUPER
[10]   THE BOLTZMANN-EQUATION DESCRIPTION OF TRANSPORT IN SUPERCONDUCTORS [J].
ARONOV, AG ;
GALPERIN, YM ;
GUREVICH, VL ;
KOZUB, VI .
ADVANCES IN PHYSICS, 1981, 30 (04) :539-592