Adaptive background estimation for real-time traffic monitoring

被引:13
作者
Gao, DS [1 ]
Zhou, J [1 ]
机构
[1] Tsing Hua Univ, Automat Dept, Beijing 100084, Peoples R China
来源
2001 IEEE INTELLIGENT TRANSPORTATION SYSTEMS - PROCEEDINGS | 2001年
关键词
adaptive background estimation; Kalman filter; recursive least square (RLS) adaptive filter; image histogram;
D O I
10.1109/ITSC.2001.948678
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose an adaptive background estimation algorithm for outdoor video surveillance system. In order to enhance the adaptation to the slow illumination changes and variant input noise in long-term running, an improved Kalman filtering model based on local-region is discussed to dynamically estimate a background image, in which the parameters are predicted by a RLS adaptive filter accurately. The experiment results on real-world image sequences show that the algorithm performs robustly and effectively.
引用
收藏
页码:330 / 333
页数:4
相关论文
共 8 条
[1]   A tunable algorithm to update a reference image [J].
Boninsegna, M ;
Bozzoli, A .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2000, 16 (04) :353-365
[2]  
Haykin S., 1991, ADAPTIVE FILTER THEO
[3]  
Kalman R E., 1960, ASME J BASIC ENG, V82, P35, DOI [DOI 10.1115/1.3662552, 10.1115/1.3662552]
[4]  
Kamijo S., 1999, Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383), P703, DOI 10.1109/ITSC.1999.821147
[5]  
KARMANN KP, 1990, SIGNAL PROCESS, V5, P951
[6]  
LAI AHS, 1998, P IEEE INT S CIRC SY, V4, P241
[7]   Learning patterns of activity using real-time tracking [J].
Stauffer, C ;
Grimson, WEL .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (08) :747-757
[8]  
[No title captured]