A characterization of the Drazin inverse

被引:17
作者
Zhang, LP [1 ]
机构
[1] No Jiatong Univ, Sch Traff & Transportat, Beijing 100044, Peoples R China
关键词
Drazin inverse; rank; index; algorithm; Jordan decomposition;
D O I
10.1016/S0024-3795(01)00274-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If A is a nonsingular matrix of order n, the inverse of A is the unique matrix X such that rank [(A)(I) (I)(X)] = rank(A). In this paper, we generalize this fact to any matrix A of order n over the complex field to obtain an analogous result for the Drazin inverse of A. We then give an algorithm for computing the Drazin inverse of A. (C) 2001 Published by Elsevier Science Inc. All rights reserved.
引用
收藏
页码:183 / 188
页数:6
相关论文
共 4 条
[1]  
CAMPBELL SL, 1983, SIAM J APPL MATH, V31, P411
[2]   A DRAZIN INVERSE FOR RECTANGULAR MATRICES [J].
CLINE, RE ;
GREVILLE, TNE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 29 (FEB) :53-62
[3]   A CHARACTERIZATION OF THE MOORE-PENROSE INVERSE [J].
FIEDLER, M ;
MARKHAM, TL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 179 :129-133
[4]  
MIAO JM, 1990, J COMPUT MATH, V8, P23