A semiparametric model selection criterion with applications to the marginal structural model

被引:34
作者
Brookhart, MA
van der Laan, MJ
机构
[1] Brigham & Womens Hosp, Dept Med, Div Pharmacoepidemiol & Pharmacoecon, Boston, MA 02120 USA
[2] Harvard Univ, Sch Med, Boston, MA 02120 USA
[3] Univ Calif Berkeley, Div Biostat, Berkeley, CA 94720 USA
关键词
cross validation; semiparametric model; nuisance parameter; model selection; censored data; causal inference;
D O I
10.1016/j.csda.2004.08.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Estimators of the parameter of interest in serniparametric models often depend on a guessed model for the nuisance parameter. The choice of the model for the nuisance parameter can affect both the finite sample bias and efficiency of the resulting estimator of the parameter of interest. In this paper we propose a finite sample criterion based on cross validation that can be used to select a nuisance parameter model from a list of candidate models. We show that expected value of this criterion is minimized by the nuisance parameter model that yields the estimator of the parameter of interest with the smallest mean-squared error relative to the expected value of an initial consistent reference estimator. In a simulation study, we examine the performance of this criterion for selecting a model for a treatment mechanism in a marginal structural model (MSM) of point treatment data. For situations where all possible models cannot be evaluated, we outline a forward1backward model selection algorithm based on the cross validation criterion proposed in this paper and show how it can be used to select models for multiple nuisance parameters. Finally, we apply the forward model selection algorithm to a MSM analysis of the relationship between boiled water use and gastrointestinal illness in HIV positive men. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:475 / 498
页数:24
相关论文
共 26 条
[1]   FITTING AUTOREGRESSIVE MODELS FOR PREDICTION [J].
AKAIKE, H .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1969, 21 (02) :243-&
[2]  
Akaike H., 1973, Selected papers of hirotugu akaike, P267
[3]  
Allen DM, 1971, 23 U KENT DEP STAT
[4]  
Dudoit M.J., 2003, UNIFIED CROSS VALIDA
[5]  
DUDOIT S, 2003, UC BERKELEY DIVISION
[6]   Associations between water-treatment methods and diarrhoea in HIV-positive individuals [J].
Eisenberg, JNS ;
Wade, TJ ;
Hubbard, A ;
Abrams, DI ;
Leiser, RJ ;
Charles, S ;
Vu, M ;
Saha, S ;
Wright, CC ;
Levy, DA ;
Jensen, P ;
Colford, JM .
EPIDEMIOLOGY AND INFECTION, 2002, 129 (02) :315-323
[7]  
GILL RD, 1997, SPRINGER LECT NOTES
[8]   IGNORABILITY AND COARSE DATA [J].
HEITJAN, DF ;
RUBIN, DB .
ANNALS OF STATISTICS, 1991, 19 (04) :2244-2253
[9]  
Ihaka R., 1996, J COMPUTATIONAL GRAP, V5, P299, DOI [10.1080/10618600.1996.10474713, 10.2307/1390807, DOI 10.1080/10618600.1996.10474713]
[10]   ON INFORMATION AND SUFFICIENCY [J].
KULLBACK, S ;
LEIBLER, RA .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :79-86