Concurrence vectors in arbitrary multipartite quantum systems

被引:67
作者
Akhtarshenas, SJ [1 ]
机构
[1] Univ Isfahan, Dept Phys, Esfahan, Iran
[2] Inst Studies Theoret Phys & Math, Tehran 193951795, Iran
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 30期
关键词
D O I
10.1088/0305-4470/38/30/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a given pure state of a multipartite system, the concurrence vector is defined by employing the defining representation of generators of the corresponding rotation groups. The norm of a concurrence vector is considered as a measure of entanglement. For the multipartite pure state, the concurrence vector is regarded as the direct sum of concurrence subvectors in the sense that each subvector is associated with a pair of particles. It is proposed to use the norm of each subvector as the contribution of the corresponding pair in entanglement of the system.
引用
收藏
页码:6777 / 6784
页数:8
相关论文
共 25 条
[1]  
[Anonymous], QUANTPH0308139
[2]  
[Anonymous], 2001, J OPT B QUANTUM SEMI, DOI DOI 10.1088/1464-4266/3/4/305
[3]   Variational characterizations of separability and entanglement of formation [J].
Audenaert, K ;
Verstraete, F ;
De Moor, B .
PHYSICAL REVIEW A, 2001, 64 (05) :13
[4]   Concurrence in arbitrary dimensions [J].
Badziag, P ;
Deuar, P ;
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
JOURNAL OF MODERN OPTICS, 2002, 49 (08) :1289-1297
[5]  
Bell JS., 1964, PHYS PHYS FIZIKA, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[6]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[7]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[8]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[9]  
Bhaktavatsala Rao D.D., 2003, QUANTPH0309047
[10]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780