Substitution of conserved methionines by leucines in chloroplast small heat shock protein results in loss of redox-response but retained chaperone-like activity

被引:26
作者
Gustavsson, N
Kokke, BPA
Anzelius, B
Boelens, WC
Sundby, C
机构
[1] Lund Univ, Dept Biochem, S-22100 Lund, Sweden
[2] Univ Nijmegen, Dept Biochem, NL-6500 HB Nijmegen, Netherlands
关键词
chaperone-like activity; methionine sulfoxidation; redox-response; small heat shock protein;
D O I
10.1110/ps.11301
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During evolution of land plants, a specific motif occurred in the N-terminal domain of the chloroplast-localized small heat shock protein, Hsp21: a sequence with highly conserved methionines, which is predicted to form an amphipathic a-helix with the methionines. situated along one side. The functional role of these conserved methionines is not understood. We have found previously that treatment, which causes methionine sulfoxidation in Hsp21, also leads to structural changes and loss of chaperone-like activity. Here, mutants of Arabidopsis thaliana Hsp21 protein were created by site-directed mutagenesis, whereby conserved methionines were substituted by oxidation-resistant leucines. Mutants lacking the only cysteine in Hsp21 were also created. Protein analyses by nondenaturing electrophoresis, size exclusion chromatography, and circular dichroism proved that sulfoxidation of the four highly conserved methionines (M49, M52, M55, and M59) is responsible for the oxidation-induced conformational changes in the Hsp21 oligomer. In contrast, the chaperone-like activity was not ultimately dependent on the methionines, because it was retained after methionine-to-leucine substitution. The functional role of the conserved methionines in Hsp21 may be to offer a possibility for redox control of chaperone-like activity and oligomeric structure dynamics.
引用
收藏
页码:1785 / 1793
页数:9
相关论文
共 34 条
[1]   Protein oxidation in aging, disease, and oxidative stress [J].
Berlett, BS ;
Stadtman, ER .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20313-20316
[2]   Mutation R120G in αB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function [J].
Bova, MP ;
Yaron, O ;
Huang, QL ;
Ding, LL ;
Haley, DA ;
Stewart, PL ;
Horwitz, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6137-6142
[3]   Analysis of chaperone function using citrate synthase as nonnative substrate protein [J].
Buchner, J ;
Grallert, H ;
Jakob, U .
MOLECULAR CHAPERONES, 1998, 290 :323-338
[4]   THE EXPANDING SMALL HEAT-SHOCK PROTEIN FAMILY, AND STRUCTURE PREDICTIONS OF THE CONSERVED ALPHA-CRYSTALLIN DOMAIN [J].
CASPERS, GJ ;
LEUNISSEN, JAM ;
DEJONG, WW .
JOURNAL OF MOLECULAR EVOLUTION, 1995, 40 (03) :238-248
[5]   ANALYSIS OF CONSERVED DOMAINS IDENTIFIES A UNIQUE STRUCTURAL FEATURE OF A CHLOROPLAST HEAT-SHOCK PROTEIN [J].
CHEN, Q ;
VIERLING, E .
MOLECULAR & GENERAL GENETICS, 1991, 226 (03) :425-431
[6]   Genealogy of the α-crystallin -: small heat-shock protein superfamily [J].
de Jong, WW ;
Caspers, GJ ;
Leunissen, JAM .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1998, 22 (3-4) :151-162
[7]   Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation [J].
Ehrnsperger, M ;
Graber, S ;
Gaestel, M ;
Buchner, J .
EMBO JOURNAL, 1997, 16 (02) :221-229
[8]   INTERACTION OF ALPHA-CRYSTALLIN WITH SPIN-LABELED PEPTIDES [J].
FARAHBAKHSH, ZT ;
HUANG, QL ;
DING, LL ;
ALTENBACH, C ;
STEINHOFF, HJ ;
HORWITZ, J ;
HUBBELL, WL .
BIOCHEMISTRY, 1995, 34 (02) :509-516
[9]   Progressive decline in the ability of calmodulin isolated from aged brain to activate the plasma membrane Ca-ATPase [J].
Gao, J ;
Yin, D ;
Yao, YH ;
Williams, TD ;
Squier, TC .
BIOCHEMISTRY, 1998, 37 (26) :9536-9548
[10]  
Gustavsson N, 1999, PROTEIN SCI, V8, P2506