Representations of the first hitting time density of an Ornstein-Uhlenbeck process

被引:149
作者
Alili, A [1 ]
Patie, P
Pedersen, JL
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] RiskLab, Dept Math, Zurich, Switzerland
[3] Univ Copenhagen, Dept Appl Math & Stat, Copenhagen, Denmark
关键词
Bessel bridge; Fourier transform; hitting time density; Laplace transform; Ornstein-Uhlenbeck process;
D O I
10.1080/15326340500294702
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Three expressions are provided for the first hitting tine density of an Ornstein-Uhlenbeck process to reach a fixed level. The first hinges on an eigenvalue expansion involving zeros of the parabolic cylinder functions. The second is an, integral representation involving some special functions whereas the third is given in terms of a functional of a 3-dimensional Bessel badge. The expressions are used for approximating the density.
引用
收藏
页码:967 / 980
页数:14
相关论文
共 22 条
[1]  
Abate J., 1992, Queueing Systems Theory and Applications, V10, P5, DOI 10.1007/BF01158520
[2]  
[Anonymous], 1998, FINANCE STOCH, DOI DOI 10.1007/s007800050045
[3]  
[Anonymous], SELECTED TABLES MATH
[4]  
Borodin AN, 2002, HDB BROWNIAN MOTION
[5]  
Breiman L., 1967, 5TH P BERK S MATH ST, V2, P9
[6]   A Monte Carlo Method for the Simulation of First Passage Times of Diffusion Processes [J].
Giraudo, Maria Teresa ;
Sacerdote, Laura ;
Zucca, Cristina .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2001, 3 (02) :215-231
[7]   A clarification note about hitting times densities for Ornstein-Uhlenbeck processes [J].
Göing-Jaeschke, A ;
Yor, M .
FINANCE AND STOCHASTICS, 2003, 7 (03) :413-415
[8]  
Henrici P., 1977, Special FunctionsIntegral Transforms-Asymptotics-Continued Fractions, V2
[9]  
Hille E., 1969, LECT ORDINARY DIFFER
[10]  
It?? K., 1974, DIFFUSION PROCESSES