Geometric properties and nonblowup of 3D incompressible Euler flow

被引:79
作者
Deng, J [1 ]
Hou, TY [1 ]
Yu, XW [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
3D Euler equations; finite time blow-up; geometric properties; global existence;
D O I
10.1081/PDE-200044488
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By exploring a local geometric property of the vorticity field along a vortex filament, we establish a sharp relationship between the geometric properties of the vorticity field and the maximum vortex stretching. This new understanding leads to an improved result of the global existence of the 3D Euler equation under mild assumptions.
引用
收藏
页码:225 / 243
页数:19
相关论文
共 22 条
[1]  
Babin A, 2001, INDIANA U MATH J, V50, P1
[2]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[3]  
Chorin AJ., 1993, Springer, DOI [10.1007/978-1-4612-0883-9, DOI 10.1007/978-1-4612-0883-9]
[4]  
Constantin P, 1996, COMMUN PART DIFF EQ, V21, P559
[5]   GEOMETRIC STATISTICS IN TURBULENCE [J].
CONSTANTIN, P .
SIAM REVIEW, 1994, 36 (01) :73-98
[6]   On the collapse of tubes carried by 3D incompressible flows [J].
Cordoba, D ;
Fefferman, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 222 (02) :293-298
[7]  
DENG J, 2004, UNPUB COMM PDE
[8]   GROUPS OF DIFFEOMORPHISMS AND MOTION OF AN INCOMPRESSIBLE FLUID [J].
EBIN, DG ;
MARSDEN, J .
ANNALS OF MATHEMATICS, 1970, 92 (01) :102-&
[9]  
EBIN DG, 1970, P 13 BIENN SEM CAN M, P135
[10]   Adaptive mesh refinement for singular solutions of the incompressible Euler equations [J].
Grauer, R ;
Marliani, C ;
Germaschewski, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (19) :4177-4180