Rapid reduction of arsenate in the medium mediated by plant roots

被引:314
作者
Xu, X. Y.
McGrath, S. P.
Zhao, F. J. [1 ]
机构
[1] Rothamsted Res, Dept Soil Sci, Harpenden AL5 2JQ, Herts, England
[2] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China
关键词
arsenate; arsenate reduction; arsenic speciation; arsenite; efflux; rice (Oryza sativa); tomato (Lycopersicon esculentum);
D O I
10.1111/j.1469-8137.2007.02195.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Microbes detoxify arsenate by reduction and efflux of arsenite. Plants have a high capacity to reduce arsenate, but arsenic efflux has not been reported. Tomato (Lycopersicon esculentum) and rice (Oryza sativa) were grown hydroponically and supplied with 10 mu M marsenate or arsenite, with or without phosphate, for 1-3 d. The chemical species of As in nutrient solutions, roots and xylem sap were monitored, roles of microbes and root exudates in As transformation were investigated and efflux of As species from tomato roots was determined. Arsenite remained stable in the nutrient solution, whereas arsenate was rapidly reduced to arsenite. Microbes and root exudates contributed little to the reduction of external arsenate. Arsenite was the predominant species in roots and xylem sap. Phosphate inhibited arsenate uptake and the appearance of arsenite in the nutrient solution, but the reduction was near complete in 24 h in both -P- and +P-treated tomato. Phosphate had a greater effect in rice than tomato. Efflux of both arsenite and arsenate was observed; the former was inhibited and the latter enhanced by the metabolic inhibitor carbonylcyanide m-chlorophenylhydrazone. Tomato and rice roots rapidly reduce arsenate to arsenite, some of which is actively effluxed to the medium. The study reveals a new aspect of As metabolism in plants.
引用
收藏
页码:590 / 599
页数:10
相关论文
共 39 条
[1]   Uptake kinetics of arsenic species in rice plants [J].
Abedin, MJ ;
Feldmann, J ;
Meharg, AA .
PLANT PHYSIOLOGY, 2002, 128 (03) :1120-1128
[2]   Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples [J].
Bednar, AJ ;
Garbarino, JR ;
Ranville, JF ;
Wildeman, TR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (10) :2213-2218
[3]  
Bérczi A, 2000, PLANT CELL ENVIRON, V23, P1287, DOI 10.1046/j.1365-3040.2000.00644.x
[4]  
BLEEKER PM, 2006, HOLCUS LANATUS PLANT, V45, P917
[5]   Arsenic species:: Effects on and accumulation by tomato plants [J].
Burló, F ;
Guijarro, I ;
Carbonell-Barrachina, AA ;
Valero, D ;
Martínez-Sánchez, F .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1999, 47 (03) :1247-1253
[6]   The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration [J].
Carbonell-Barrachina, AA ;
Aarabi, MA ;
DeLaune, RD ;
Gambrell, RP ;
Patrick, WH .
PLANT AND SOIL, 1998, 198 (01) :33-43
[7]   Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots [J].
Chen, Z ;
Zhu, YG ;
Liu, WJ ;
Meharg, AA .
NEW PHYTOLOGIST, 2005, 165 (01) :91-97
[8]  
DEY S, 1994, J BIOL CHEM, V269, P25442
[9]   Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2) [J].
Dhankher, OP ;
Rosen, BP ;
McKinney, EC ;
Meagher, RB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (14) :5413-5418
[10]   A CDC25 homologue from rice functions as an arsenate reductase [J].
Duan, Gui-Lan ;
Zhou, Yao ;
Tong, Yi-Ping ;
Mukhopadhyay, Rita ;
Rosen, Barry P. ;
Zhu, Yong-Guan .
NEW PHYTOLOGIST, 2007, 174 (02) :311-321