Plant physiological acclimation to irradiation by light-emitting diodes (LEDs)

被引:31
作者
Hogewoning, S. W. [1 ]
Trouwborst, G. [1 ]
Engbers, G. J. [1 ]
Harbinson, J. [1 ]
van Ieperen, W. [1 ]
Ruijsch, J. [1 ]
van Kooten, O. [1 ]
Schapendonk, A. H. C. M.
Pot, C. S.
机构
[1] Univ Wageningen & Res Ctr, Hort Prod Chains Grp, NL-6709 PG Wageningen, Netherlands
来源
PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON ADVANCES IN ENVIRONMENTAL CONTROL, AUTOMATION AND CULTIVATION SYSTEMS FOR SUSTAINABLE, HIGH-QUALITY CROP PRODUCTION UNDER PROTECTED CULTIVATION | 2007年 / 761期
关键词
narrow band lighting; assimilation lighting; supplemental lighting; interlighting; Spirodela polyrrhiza; greenhouse climate; leaf age;
D O I
10.17660/ActaHortic.2007.761.23
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
LEDs may be a suitable light source for future use as assimilation lighting in protected greenhouse cultivation. LEDs have properties which offer advantages compared to other light sources, but which also raise specific research questions. The narrow band spectrum of LEDs enables manufacturers to produce LED based light-sources specifically suitable for photosynthesis and other horticulturally relevant plant properties. The low radiated heat also makes LEDs suitable for interlighting (i.e. lighting from within the canopy), for which high pressure sodium lamps are not suitable. However, when using LEDs, crops must be able to acclimate their photosynthetic functioning to narrow band lighting (NBL) to efficiently use this light. Also, daylight-adapted leaves must be able to re-acclimate to NBL if LEDs would be used for interlighting in a high-wire grown crop. If low photosynthesis rates in older, lower leaves of the crop are also due to leaf age, besides low light, interlighting would be less effective. For investigating the intrinsic effect of NBL, we used 9 different arrays comprised of a single LED type (peak wavelengths in the range 460-668 nm) at light-limited irradiance (50 mu mol m(-2) s(-1)). Spirodela polyrrhiza (Lemnaceae) was cultivated as its leaves can not change in distance or orientation towards the light source. This enabled us to compare the effects of the different light sources on parameters such as growth rate and photosynthetic pigment composition. In order to separate the effect of light intensity and leaf age on photosynthesis, tomato plants were grown horizontally, so that older leaves were not shaded by younger leaves. Re-acclimation of leaves to NBL was investigated by illuminating older leaves (low in the canopy) using different LED arrays in a high-wire grown tomato crop. The light-harvesting apparatus of Spirodela polyrrhiza acclimated to the different NBL regimes within 6 days. Leaf age proved to be an irrelevant factor for photosynthetic capacity (P-max) of greenhouse grown tomato plants. P-max of leaves at a low position in a high-wire grown tomato crop, with a low P-max did re-acclimate to the higher light intensities supplied by the supplemental NBL by progressively increasing their P-max. However, as it took 14 days for P-max. to increase from 5.6 to 12.4 mu mol CO2 m(-2) s(-1), maintaining a continuously higher light level within the canopy would be more effective.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 11 条
[1]   PHOTOSYNTHETIC ACTION SPECTRUM OF BEAN PLANT [J].
BALEGH, SE ;
BIDDULPH, O .
PLANT PHYSIOLOGY, 1970, 46 (01) :1-&
[2]  
GOINS GD, 2002, 2002012338 SO AUT EN
[3]   What birds see [J].
Goldsmith, TH .
SCIENTIFIC AMERICAN, 2006, 295 (01) :68-75
[4]   Interlighting improves production of year-round cucumber [J].
Hovi, T ;
Näkkilä, J ;
Tahvonen, R .
SCIENTIA HORTICULTURAE, 2004, 102 (03) :283-294
[5]   Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes [J].
Kim, HH ;
Goins, GD ;
Wheeler, RM ;
Sager, JC .
HORTSCIENCE, 2004, 39 (07) :1617-1622
[6]   DYNAMICS OF PHOTOSYSTEM STOICHIOMETRY ADJUSTMENT BY LIGHT QUALITY IN CHLOROPLASTS [J].
KIM, JH ;
GLICK, RE ;
MELIS, A .
PLANT PHYSIOLOGY, 1993, 102 (01) :181-190
[7]   ACTION SPECTRUM, ABSORPTANCE AND QUANTUM YIELD OF PHOTOSYNTHESIS IN CROP PLANTS [J].
MCCREE, KJ .
AGRICULTURAL METEOROLOGY, 1972, 9 (3-4) :191-&
[9]  
Sonneveld C, 1994, VOEDINGSOPLOSSINGEN, V10th
[10]   THE SPECTRAL DETERMINATION OF CHLOROPHYLL-A AND CHLOROPHHYLL-B, AS WELL AS TOTAL CAROTENOIDS, USING VARIOUS SOLVENTS WITH SPECTROPHOTOMETERS OF DIFFERENT RESOLUTION [J].
WELLBURN, AR .
JOURNAL OF PLANT PHYSIOLOGY, 1994, 144 (03) :307-313