Beyond time-frequency analysis: Energy densities in one and many dimensions

被引:7
作者
Baraniuk, RG [1 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77251 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/78.709511
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Given a unitary operator A representing a physical quantity of interest, we employ concepts from group representation theory to define two natural signal energy densities for A. The first is invariant to A and proves useful when the effect of A is to be ignored; the second is covariant to A and measures the "A" content of signals. We also consider joint densities for multiple operators and, in the process, provide an alternative interpretation of Cohen's general construction for joint distributions of arbitrary variables.
引用
收藏
页码:2305 / 2314
页数:10
相关论文
共 50 条
[1]   WIDE-BAND, PROPORTIONAL-BANDWIDTH WIGNER-VILLE ANALYSIS [J].
ALTES, RA .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (06) :1005-1012
[2]   Covariant time-frequency representations through unitary equivalence [J].
Baraniuk, RG .
IEEE SIGNAL PROCESSING LETTERS, 1996, 3 (03) :79-81
[3]   ON JOINT DISTRIBUTIONS FOR ARBITRARY VARIABLES [J].
BARANIUK, RG ;
COHEN, L .
IEEE SIGNAL PROCESSING LETTERS, 1995, 2 (01) :10-12
[4]   Wigner-based formulation of the chirplet transform [J].
Baraniuk, RG ;
Jones, DL .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (12) :3129-3135
[5]   UNITARY EQUIVALENCE - A NEW TWIST ON SIGNAL-PROCESSING [J].
BARANIUK, RG ;
JONES, DL .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (10) :2269-2282
[6]   SIGNAL TRANSFORM COVARIANT TO SCALE CHANGES [J].
BARANIUK, RG .
ELECTRONICS LETTERS, 1993, 29 (19) :1675-1676
[7]   A limitation of the kernel method for joint distributions of arbitrary variables [J].
Baraniuk, RG .
IEEE SIGNAL PROCESSING LETTERS, 1996, 3 (02) :51-53
[8]  
BARANIUK RG, 1994, P IEEE INT C AC SPEE, V3, P357
[9]  
BARANIUK RG, 1998, MULTIDIMENSIONAL SYS
[10]  
BARANIUK RG, 1995, IEEE T ACOUST SPEECH, V2, P1021