A proteome analysis of the cadmium response in Saccharomyces cerevisiae

被引:313
作者
Vido, K [1 ]
Spector, D [1 ]
Lagniel, G [1 ]
Lopez, S [1 ]
Toledano, MB [1 ]
Labarre, J [1 ]
机构
[1] CEA Saclay, Serv Biochim & Genet Mol, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1074/jbc.M008708200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cadmium is very toxic at low concentrations, but the basis for its toxicity is not clearly understood. We analyzed the proteomic response of yeast cells to acute cadmium stress and identified 54 induced and 43 repressed proteins. A striking result is the strong induction of 9 enzymes of the sulfur amino acid biosynthetic pathway. Accordingly, we observed that glutathione synthesis is strongly increased in response to cadmium treatment. Several proteins with antioxidant properties were also induced. The induction of nine proteins is dependent upon the transactivator Yap1p, consistent with the cadmium hypersensitive phenotype of the YAP1-disrupted strain. Most of these proteins are also overexpressed in a strain overexpressing Yap1p, a result that correlates with the cadmium hyper-resistant phenotype of this strain. Two of these Yap1p-dependent proteins, thioredoxin and thioredoxin reductase, play an important role in cadmium tolerance because strains lacking the corresponding genes are hypersensitive to this metal. Altogether, our data indicate that the two cellular thiol redox systems, glutathione and thioredoxin, are essential for cellular defense against cadmium.
引用
收藏
页码:8469 / 8474
页数:6
相关论文
共 36 条
[1]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[2]   Two-dimensional gel protein database of Saccharomyces cerevisiae [J].
Boucherie, H ;
Sagliocco, F ;
Joubert, R ;
Maillet, I ;
Labarre, J ;
Perrot, M .
ELECTROPHORESIS, 1996, 17 (11) :1683-1699
[3]   The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons [J].
Boy-Marcotte, E ;
Lagniel, G ;
Perrot, M ;
Bussereau, F ;
Boudsocq, A ;
Jacquet, M ;
Labarre, J .
MOLECULAR MICROBIOLOGY, 1999, 33 (02) :274-283
[4]   Cadmium is an inducer of oxidative stress in yeast [J].
Brennan, RJ ;
Schiestl, RH .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 1996, 356 (02) :171-178
[5]   Acute cadmium exposure inactivates thioltransferase (glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis [J].
Chrestensen, CA ;
Starke, DW ;
Mieyal, JJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26556-26565
[6]   Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network [J].
Dormer, UH ;
Westwater, J ;
McLaren, NF ;
Kent, NA ;
Mellor, J ;
Jamieson, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32611-32616
[7]   The H2O2 stimulon in Saccharomyces cerevisiae [J].
Godon, C ;
Lagniel, G ;
Lee, J ;
Buhler, JM ;
Kieffer, S ;
Perrot, R ;
Boucherie, H ;
Toledano, MB ;
Labarre, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (35) :22480-22489
[8]   CADMIUM-MEDIATED INDUCTION OF CELLULAR DEFENSE-MECHANISM - A NOVEL EXAMPLE FOR THE DEVELOPMENT OF ADAPTIVE RESPONSE AGAINST A TOXICANT [J].
GUPTA, S ;
ATHAR, M ;
BEHARI, JR ;
SRIVASTAVA, RC .
INDUSTRIAL HEALTH, 1991, 29 (01) :1-9
[9]  
GUTHRIE C, 1991, METHOD ENZYMOL, V194, P273
[10]   OXYGEN-TOXICITY, OXYGEN RADICALS, TRANSITION-METALS AND DISEASE [J].
HALLIWELL, B ;
GUTTERIDGE, JMC .
BIOCHEMICAL JOURNAL, 1984, 219 (01) :1-14