Anandamide induces necrosis in primary hepatic stellate cells

被引:134
作者
Siegmund, SV [1 ]
Uchinami, H [1 ]
Osawa, Y [1 ]
Brenner, DA [1 ]
Schwabe, RF [1 ]
机构
[1] Columbia Univ, Coll Phys & Surg, Dept Med, New York, NY 10032 USA
关键词
D O I
10.1002/hep.20667
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
The endogenous cannabinoid anandamide (AEA) is a lipid mediator that blocks proliferation and induces apoptosis in many cell types. Although A-EA levels are elevated in liver fibrosis, its role in fibrogenesis remains unclear. This study investigated effects of AEA in primary hepatic stellate cells (HSCs). Anandamide blocked HSC proliferation at concentrations of I to 10 mu mol/L but did not affect HSC proliferation or activation at nanomolar concentrations. At higher concentrations (25-100 mu mol/L), AEA rapidly and dose-dependently induced cell death in primary culture-activated and in vivo-activated HSCs, with over 70% cell death after 4 hours at 25 mu mol/L. In contrast to treatment with Fas ligand or gliotoxin, A-EA-mediated death was caspase independent and showed typical features of necrosis such as rapid adenosine triphosphate depletion and propidium iodide uptake. Anandamide-induced reactive oxygen species (ROS) formation, and an increase in intracellular Ca2+. Pretreatment with the antioxidant glutathione or Ca2+-chelation attenuated A-EA-induced cell death. Although the putative endocannabinoid receptors CB1, CB2, and VR1 were expressed in HSCs, specific receptor blockade failed to block cell death. Depletion of membrane cholesterol by methyl-beta-cyclodextrin inhibited AEA binding, blocked ROS formation and intracellular Ca2+-increase, and prevented cell death. In primary hepatocytes, AEA showed significantly lower binding and failed to induce cell death even after prolonged treatment. In conclusion, A-EA efficiently induces necrosis in activated HSCs, an effect that depends on membrane cholesterol and a subsequent increase in intracellular Ca2+ and ROS. The anti-proliferative effects and the selective killing of HSCs, but not hepatocytes, indicate that AEA may be used as a potential anti-fibrogenic tool.
引用
收藏
页码:1085 / 1095
页数:11
相关论文
共 50 条
[1]   (R)-METHANANDAMIDE - A CHIRAL NOVEL ANANDAMIDE POSSESSING HIGHER POTENCY AND METABOLIC STABILITY [J].
ABADJI, V ;
LIN, SY ;
TAHA, G ;
GRIFFIN, G ;
STEVENSON, LA ;
PERTWEE, RG ;
MAKRIYANNIS, A .
JOURNAL OF MEDICINAL CHEMISTRY, 1994, 37 (12) :1889-1893
[2]   Arginine vasopressin induces contraction and stimulates growth of cultured human hepatic stellate cells [J].
Bataller, R ;
Nicolas, JM ;
Gines, P ;
Esteve, A ;
Gorbig, MN ;
GarciaRamallo, E ;
Pinzani, M ;
Ros, J ;
Jimenez, W ;
Thomas, AP ;
Arroyo, V ;
Rodes, J .
GASTROENTEROLOGY, 1997, 113 (02) :615-624
[3]   NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis [J].
Bataller, R ;
Schwabe, RF ;
Choi, YH ;
Yang, L ;
Paik, YH ;
Lindquist, J ;
Qian, T ;
Schoonhoven, R ;
Hagedorn, CH ;
Lemasters, JJ ;
Brenner, DA .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (09) :1383-1394
[4]   Hepatic stellate cells as a target for the treatment of liver fibrosis [J].
Bataller, R ;
Brenner, DA .
SEMINARS IN LIVER DISEASE, 2001, 21 (03) :437-451
[5]   Endocannabinoids acting at vascular CB, receptors mediate the vasodilated state in advanced liver cirrhosis [J].
Bátkai, S ;
Járat, Z ;
Wagner, JA ;
Goparaju, SK ;
Varga, K ;
Liu, J ;
Wang, L ;
Mirshahi, F ;
Khanolkar, AD ;
Makriyannis, A ;
Urbaschek, R ;
Garcia, N ;
Sanyal, AJ ;
Kunos, G .
NATURE MEDICINE, 2001, 7 (07) :827-832
[6]   Membrane cholesterol but not putative receptors mediates anandamide-induced hepatocyte apoptosis [J].
Biswas, KK ;
Sarker, KP ;
Abeyama, K ;
Kawahara, K ;
Iino, S ;
Otsubo, Y ;
Saigo, K ;
Izumi, H ;
Hashiguchi, T ;
Yamakuchi, M ;
Yamaji, K ;
Endo, R ;
Suzuki, K ;
Imaizumi, H ;
Maruyama, I .
HEPATOLOGY, 2003, 38 (05) :1167-1177
[7]   The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release [J].
Bradham, CA ;
Qian, T ;
Streetz, K ;
Trautwein, C ;
Brenner, DA ;
Lemasters, JJ .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (11) :6353-6364
[8]   Production and physiological actions of anandamide in the vasculature of the rat kidney [J].
Deutsch, DG ;
Goligorsky, MS ;
Schmid, PC ;
Krebsbach, RJ ;
Schmid, HHO ;
Das, SK ;
Dey, SK ;
Arreaza, G ;
Thorup, C ;
Stefano, G ;
Moore, LC .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (06) :1538-1546
[9]   ISOLATION AND STRUCTURE OF A BRAIN CONSTITUENT THAT BINDS TO THE CANNABINOID RECEPTOR [J].
DEVANE, WA ;
HANUS, L ;
BREUER, A ;
PERTWEE, RG ;
STEVENSON, LA ;
GRIFFIN, G ;
GIBSON, D ;
MANDELBAUM, A ;
ETINGER, A ;
MECHOULAM, R .
SCIENCE, 1992, 258 (5090) :1946-1949
[10]   FORMATION AND INACTIVATION OF ENDOGENOUS CANNABINOID ANANDAMIDE IN CENTRAL NEURONS [J].
DIMARZO, V ;
FONTANA, A ;
CADAS, H ;
SCHINELLI, S ;
CIMINO, G ;
SCHWARTZ, JC ;
PIOMELLI, D .
NATURE, 1994, 372 (6507) :686-691