Bilevel problems over polyhedra with extreme point optimal solutions

被引:13
作者
Calvete, Herminia I. [1 ]
Gale, Carmen [2 ]
Dempe, Stephan [3 ]
Lohse, Sebastian [3 ]
机构
[1] Univ Zaragoza, Dpto Metodos Estadist, IUMA, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Dpto Metodos Estadist, IUMA, Zaragoza 50018, Spain
[3] Tech Univ Bergakad Freiberg, Dept Math & Comp Sci, D-09596 Freiberg, Germany
关键词
Bilevel programming; Quasiconcave; Quadratic; Extreme point;
D O I
10.1007/s10898-011-9762-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Bilevel programming involves two optimization problems where the constraint region of the upper level problem is implicitly determined by another optimization problem. In this paper we focus on bilevel problems over polyhedra with upper level constraints involving lower level variables. On the one hand, under the uniqueness of the optimal solution of the lower level problem, we prove that the fact that the objective functions of both levels are quasiconcave characterizes the property of the existence of an extreme point of the polyhedron defined by the whole set of constraints which is an optimal solution of the bilevel problem. An example is used to show that this property is in general violated if the optimal solution of the lower level problem is not unique. On the other hand, if the lower level objective function is not quasiconcave but convex quadratic, assuming the optimistic approach we prove that the optimal solution is attained at an extreme point of an 'enlarged' polyhedron.
引用
收藏
页码:573 / 586
页数:14
相关论文
共 20 条
  • [1] [Anonymous], 1997, Nondifferentiable and Two-Level Mathematical Programming, DOI DOI 10.1007/978-1-4615-6305-1
  • [2] A note on the definition of a linear bilevel programming solution
    Audet, Charles
    Haddad, Jean
    Savard, Gilles
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (01) : 351 - 355
  • [3] Bard J.F., 1998, ALGORITHMS APPL
  • [4] A new approach for solving linear bilevel problems using genetic algorithms
    Calvete, Herminia I.
    Gale, Carmen
    Mateo, Pedro M.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 188 (01) : 14 - 28
  • [5] Linear bilevel multi-follower programming with independent followers
    Calvete, Herminia I.
    Gale, Carmen
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (03) : 409 - 417
  • [6] On the quasiconcave bilevel programming problem
    Calvete, HI
    Gale, C
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (03) : 613 - 622
  • [7] Multilevel (Hierarchical) Optimization: Complexity Issues, Optimality Conditions, Algorithms
    Chinchuluun, Altannar
    Pardalos, Panos M.
    Huang, Hong-Xuan
    [J]. ADVANCES IN APPLIED MATHEMATICS AND GLOBAL OPTIMIZATION, 2009, 17 : 197 - +
  • [8] ON CONTINUITY OF MINIMUM SET OF A CONTINUOUS FUNCTION
    DANTZIG, GB
    FOLKMAN, J
    SHAPIRO, N
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 17 (03) : 519 - &
  • [9] Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints
    Dempe, S
    [J]. OPTIMIZATION, 2003, 52 (03) : 333 - 359
  • [10] Dempe S., 2008, IS BILEVEL PROGRAMMI