The SOA/VOC/NOx system:: an explicit model of secondary organic aerosol formation

被引:107
作者
Camredon, M.
Aumont, B. [1 ]
Lee-Taylor, J.
Madronich, S.
机构
[1] Univ Paris 07, Univ Paris 12, UMR, CNRS 7583, F-94010 Creteil, France
[2] Univ Paris 07, Univ Paris 12, Lab Interuniversitaire Syst Atmospher, F-94010 Creteil, France
[3] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA
关键词
D O I
10.5194/acp-7-5599-2007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Our current understanding of secondary organic aerosol (SOA) formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i) the potential for products of multiple oxidation steps contributing to SOA, and (ii) the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i) support interpretations of SOA formation observed in laboratory chamber experiments, (ii) give some insights on SOA formation under atmospherically relevant conditions and (iii) investigate implications for the regional/global lifetimes of the SOA.
引用
收藏
页码:5599 / 5610
页数:12
相关论文
共 67 条
[1]   Atmospheric chemistry of VOCs and NOx [J].
Atkinson, R .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (12-14) :2063-2101
[2]   Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach [J].
Aumont, B ;
Szopa, S ;
Madronich, S .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :2497-2517
[3]   Contribution of secondary VOC to the composition of aqueous atmospheric particles: A modeling approach [J].
Aumont, B ;
Madronich, S ;
Bey, I ;
Tyndall, GS .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 2000, 35 (01) :59-75
[4]   Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation [J].
Bey, I ;
Jacob, DJ ;
Yantosca, RM ;
Logan, JA ;
Field, BD ;
Fiore, AM ;
Li, QB ;
Liu, HGY ;
Mickley, LJ ;
Schultz, MG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) :23073-23095
[5]   High contribution of biogenic hydroperoxides to secondary organic aerosol formation [J].
Bonn, B ;
von Kuhlmann, R ;
Lawrence, MG .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (10) :L101081-4
[6]   MOZART, a global chemical transport model for ozone and related chemical tracers 1. Model description [J].
Brasseur, GP ;
Hauglustaine, DA ;
Walters, S ;
Rasch, PJ ;
Muller, JF ;
Granier, C ;
Tie, XX .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D21) :28265-28289
[7]  
Calvert J. G., 2000, MECHANISMS ATMOSPHER
[8]   Assessment of vapor pressure estimation methods for secondary organic aerosol modeling [J].
Camredon, M ;
Aumont, B .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (12) :2105-2116
[9]  
Carter W.P. L., 2000, DOCUMENTATION SAPRC9
[10]   Global distribution and climate forcing of carbonaceous aerosols [J].
Chung, SH ;
Seinfeld, JH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D19) :AAC14-1