Activation of class III ribonucleotide reductase by flavodoxin: A protein radical-driven electron transfer to the iron-sulfur center

被引:41
作者
Mulliez, E [1 ]
Padovani, D [1 ]
Atta, M [1 ]
Alcouffe, C [1 ]
Fontecave, M [1 ]
机构
[1] Univ Grenoble 1, CNRS, CEA, DBMS CB,Lab Chim & Biochim,Ctr Redox Biol, F-38054 Grenoble 09, France
关键词
D O I
10.1021/bi001746c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In its active form, Escherichia coli class III ribonucleotide reductase homodimer alpha (2) relies on a protein free radical located on the Gly(681) residue of the alpha polypeptide. The formation of the glycyl radical, namely, the activation of the enzyme, involves the concerted action of four components: S-adenosylmethionine (AdoMet), dithiothreitol (DTT), an Fe-S protein called beta or "activase", and a reducing system consisting of NADPH, NADPH:flavodoxin oxidoreductase, and flavodoxin (fldx). It has been proposed that a reductant serves to generate a reduced [4Fe-4S](+) cluster absolutely required for the reductive cleavage of AdoMet and the generation of the radical. Here, we suggest that the one-electron reduced form of flavodoxin (SQ), the only detectable product of the in vitro enzymatic reduction of flavodoxin, can support the formation of the glycyl radical. However, the redox potential of the Fe-S center of the enzyme is shown to be similar to 300 mV more negative than that of the SQ/fldx couple and not shifted to a more positive value by AdoMet binding, It is also more negative than that of the HQ/SQ couple, HQ being the fully reduced form of flavodoxin. Our interpretation is that activation of ribonucleotide reductase occurs through coupling of the reduction of the Fe-S center by flavodoxin to two thermodynamically favorable reactions, the oxidation of the cluster by AdoMet, yielding methionine and the 5'-deoxyadenosyl radical, and the oxidation of the glycine residue to the corresponding glycyl radical by the 5'-deoxyadenosyl radical. The second reaction plays the major role on the basis that a Gly-to-Ala mutation results in a greatly decreased production of methionine.
引用
收藏
页码:3730 / 3736
页数:7
相关论文
共 43 条
[1]   MECHANISM OF REDUCTIVE ACTIVATION OF COBALAMIN-DEPENDENT METHIONINE SYNTHASE - AN ELECTRON-PARAMAGNETIC RESONANCE SPECTROELECTROCHEMICAL STUDY [J].
BANERJEE, RV ;
HARDER, SR ;
RAGSDALE, SW ;
MATTHEWS, RG .
BIOCHEMISTRY, 1990, 29 (05) :1129-1135
[3]   ESCHERICHIA-COLI FERREDOXIN NADP+ REDUCTASE - ACTIVATION OF ESCHERICHIA-COLI ANAEROBIC RIBONUCLEOTIDE REDUCTION, CLONING OF THE GENE (FPR), AND OVEREXPRESSION OF THE PROTEIN [J].
BIANCHI, V ;
REICHARD, P ;
ELIASSON, R ;
PONTIS, E ;
KROOK, M ;
JORNVALL, H ;
HAGGARDLJUNGOUIST, E .
JOURNAL OF BACTERIOLOGY, 1993, 175 (06) :1590-1595
[4]   FLAVODOXIN IS REQUIRED FOR THE ACTIVATION OF THE ANAEROBIC RIBONUCLEOTIDE REDUCTASE [J].
BIANCHI, V ;
ELIASSON, R ;
FONTECAVE, M ;
MULLIEZ, E ;
HOOVER, DM ;
MATTHEWS, RG ;
REICHARD, P .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1993, 197 (02) :792-797
[5]  
BLASCHKOWSKI HP, 1982, EUR J BIOCHEM, V123, P563
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   Pyruvate formate-lyase activating enzyme is an iron-sulfur protein [J].
Broderick, JB ;
Duderstadt, RE ;
Fernandez, DC ;
Wojtuszewski, K ;
Henshaw, TF ;
Johnson, MK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (31) :7396-7397
[8]   [2Fe-2S] to [4Fe-4S] cluster conversion in Escherichia coli biotin synthase [J].
Duin, EC ;
Lafferty, ME ;
Crouse, BR ;
Allen, RM ;
Sanyal, I ;
Flint, DH ;
Johnson, MK .
BIOCHEMISTRY, 1997, 36 (39) :11811-11820
[9]  
ELIASSON R, 1994, J BIOL CHEM, V269, P26052