FNS, CFNS and HEIV: A unifying approach

被引:19
作者
Chojnacki, W [1 ]
Brooks, MJ [1 ]
van den Hengel, A [1 ]
Gawley, D [1 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
关键词
statistical methods; maximum likelihood; (un)constrained minimisation; fundamental matrix; epipolar equation; conic fitting;
D O I
10.1007/s10851-005-6465-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimation of parameters from image tokens is a central problem in computer vision. FNS, CFNS and HEIV are three recently developed methods for solving special but important cases of this problem. The schemes are means for finding unconstrained (FNS, HEIV) and constrained (CFNS) minimisers of cost functions. In earlier work of the authors, FNS, CFNS and a core version of HEIV were applied to a specific cost function. Here we extend the approach to more general cost functions. This allows the FNS, CFNS and HEIV methods to be placed within a common framework.
引用
收藏
页码:175 / 183
页数:9
相关论文
共 12 条
  • [1] [Anonymous], 1993, Three-Dimensional Computer Vision: A Geometric Viewpoint
  • [2] Determining the egomotion of an uncalibrated camera from instantaneous optical flow
    Brooks, MJ
    Chojnacki, W
    Baumela, L
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (10) : 2670 - 2677
  • [3] A new constrained parameter estimator for computer vision applications
    Chojnacki, W
    Brooks, MJ
    van den Hengel, A
    Gawley, D
    [J]. IMAGE AND VISION COMPUTING, 2004, 22 (02) : 85 - 91
  • [4] From FNS to HEIV: A link between two vision parameter estimation methods
    Chojnacki, W
    Brooks, MJ
    van den Hengel, A
    Gawley, D
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (02) : 264 - 268
  • [5] Chojnacki W, 2000, IEEE T PATTERN ANAL, V22, P1294, DOI 10.1109/34.888714
  • [6] Direct least square fitting of ellipses
    Fitzgibbon, A
    Pilu, M
    Fisher, RB
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (05) : 476 - 480
  • [7] Kanatani K., 1996, STAT OPTIMIZATION GE
  • [8] Heteroscedastic regression in computer vision: Problems with bilinear constraint
    Leedan, Y
    Meer, P
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2000, 37 (02) : 127 - 150
  • [9] Matei B, 2000, PROC CVPR IEEE, P18, DOI 10.1109/CVPR.2000.854727
  • [10] Matei B., 2001, THESIS RUTGERS U NEW