Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations

被引:192
作者
Marella, S [1 ]
Krishnan, S [1 ]
Liu, H [1 ]
Udaykumar, HS [1 ]
机构
[1] Univ Iowa, Dept Mech & Ind Engn, Seamans Ctr 3026, Iowa City, IA 52242 USA
关键词
moving boundaries; sharp interface method; level-sets; Cartesian grid;
D O I
10.1016/j.jcp.2005.03.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A Cartesian grid method is developed for the simulation of incompressible flows around stationary and moving three-dimensional immersed boundaries. The embedded boundaries are represented using level-sets and treated in a sharp manner without the use of source terms to represent boundary effects. The narrow-band distance function field in the level-set boundary representation facilitates implementation of the finite-difference flow solver. The resulting algorithm is implemented in a straightforward manner in three-dimensions and retains global second-order accuracy. The accuracy of the finite-difference scheme is established and shown to be comparable to finite-volume schemes that are considerably more difficult to implement. Moving boundaries are handled naturally. The pressure solver is accelerated using an algebraic multigrid technique adapted to be effective in the presence of moving embedded boundaries. Benchmarking of the method is performed against available numerical as well as experimental results. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 85 条
[1]   A FAST LEVEL SET METHOD FOR PROPAGATING INTERFACES [J].
ADALSTEINSSON, D ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 118 (02) :269-277
[2]   The fast construction of extension velocities in level set methods [J].
Adalsteinsson, D ;
Sethian, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (01) :2-22
[3]   Numerical simulation of dendritic solidification with convection: Two-dimensional geometry [J].
Al-Rawahi, N ;
Tryggvason, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 180 (02) :471-496
[4]   A Cartesian grid projection method for the incompressible Euler equations in complex geometries [J].
Almgren, AS ;
Bell, JB ;
Colella, P ;
Marthaler, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (05) :1289-1309
[5]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[6]   A phase-field model of solidification with convection [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 135 (1-2) :175-194
[7]   Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations [J].
Balaras, E .
COMPUTERS & FLUIDS, 2004, 33 (03) :375-404
[8]   A CONTINUUM METHOD FOR MODELING SURFACE-TENSION [J].
BRACKBILL, JU ;
KOTHE, DB ;
ZEMACH, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) :335-354
[9]   A Cartesian grid finite-volume method for the advection-diffusion equation in irregular geometries [J].
Calhoun, D ;
LeVeque, RJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 157 (01) :143-180
[10]   A simple level set method for solving Stefan problems [J].
Chen, S ;
Merriman, B ;
Osher, S ;
Smereka, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (01) :8-29