Glucolipotoxicity:: Fuel excess and β-cell dysfunction

被引:851
作者
Poitout, Vincent [1 ]
Robertson, R. Paul [2 ,3 ]
机构
[1] CR CHUM, Montreal Diabet Res Ctr, Montreal, PQ H1W 4A4, Canada
[2] Univ Washington, Dept Med, Seattle, WA 98195 USA
[3] Univ Washington, Dept Pharmacol, Seattle, WA 98195 USA
关键词
D O I
10.1210/er.2007-0023
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Glucotoxicity, lipotoxicity, and glucolipotoxicity are secondary phenomena that are proposed to play a role in all forms of type 2 diabetes. The underlying concept is that once the primary pathogenesis of diabetes is established, probably involving both genetic and environmental forces, hyperglycemia and very commonly hyperlipidemia ensue and thereafter exert additional damaging or toxic effects on the beta-cell. In addition to their contribution to the deterioration of beta-cell function after the onset of the disease, elevations of plasma fatty acid levels that often accompany insulin resistance may, as glucose levels begin to rise outside of the normal range, also play a pathogenic role in the early stages of the disease. Because hyperglycemia is a prerequisite for lipotoxicity to occur, the term glucolipotoxicity, rather than lipotoxicity, is more appropriate to describe deleterious effects of lipids on beta-cell function. In vitro and in vivo evidence supporting the concept of glucotoxicity is presented first, as well as a description of the underlying mechanisms with an emphasis on the role of oxidative stress. Second, we discuss the functional manifestations of glucolipotoxicity on insulin secretion, insulin gene expression, and beta-cell death, and the role of glucose in the mechanisms of glucolipotoxicity. Finally, we attempt to define the role of these phenomena in the natural history of beta-cell compensation, decompensation, and failure during the course of type 2 diabetes.
引用
收藏
页码:351 / 366
页数:16
相关论文
共 198 条
[1]   Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells [J].
Abderrahmani, A. ;
Niederhauser, G. ;
Favre, D. ;
Abdelli, S. ;
Ferdaoussi, M. ;
Yang, J. Y. ;
Regazzi, R. ;
Widmann, C. ;
Waeber, G. .
DIABETOLOGIA, 2007, 50 (06) :1304-1314
[2]   Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets [J].
Benhamou, PY ;
Moriscot, C ;
Richard, MJ ;
Beatrix, O ;
Badet, L ;
Pattou, F ;
Kerr-Conte, J ;
Chroboczek, J ;
Lemarchand, P ;
Halimi, S .
DIABETOLOGIA, 1998, 41 (09) :1093-1100
[3]   Effects of fatty acids and ketone bodies on basal insulin secretion in type 2 diabetes [J].
Boden, G ;
Chen, XH .
DIABETES, 1999, 48 (03) :577-583
[4]   EFFECTS OF A 48-H FAT INFUSION ON INSULIN-SECRETION AND GLUCOSE-UTILIZATION [J].
BODEN, G ;
CHEN, XH ;
ROSNER, J ;
BARTON, M .
DIABETES, 1995, 44 (10) :1239-1242
[5]   Biochemical mechanism of lipid-induced impairment of glucose-stimulated insulin secretion and reversal with a malate analogue [J].
Boucher, A ;
Lu, DH ;
Burgess, SC ;
Telemaque-Potts, S ;
Jensen, MV ;
Mulder, H ;
Wang, MY ;
Unger, RH ;
Sherry, AD ;
Newgard, CB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (26) :27263-27271
[6]   Ceramide directly activates protein kinase C ζ to regulate a stress-activated protein kinase signaling complex [J].
Bourbon, NA ;
Yun, J ;
Kester, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (45) :35617-35623
[7]   Long-term exposure of isolated rat islets of langerhans to supraphysiologic glucose concentrations decreases insulin mRNA levels [J].
Briaud, I ;
Rouault, C ;
Reach, G ;
Poitout, V .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1999, 48 (03) :319-323
[8]   Differential effects of hyperlipidemia on insulin secretion in islets of Langerhans from hyperglycemic versus normoglycemic rats [J].
Briaud, I ;
Kelpe, CL ;
Johnson, LM ;
Tran, POT ;
Poitout, V .
DIABETES, 2002, 51 (03) :662-668
[9]   Lipotoxicity of the pancreatic β-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids [J].
Briaud, I ;
Harmon, JS ;
Kelpe, CL ;
Segu, VBG ;
Poitout, V .
DIABETES, 2001, 50 (02) :315-321
[10]   The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids [J].
Briscoe, CP ;
Tadayyon, M ;
Andrews, JL ;
Benson, WG ;
Chambers, JK ;
Eilert, MM ;
Ellis, C ;
Elshourbagy, NA ;
Goetz, AS ;
Minnick, DT ;
Murdock, PR ;
Sauls, HR ;
Shabon, U ;
Spinage, LD ;
Strum, JC ;
Szekeres, PG ;
Tan, KB ;
Way, JM ;
Ignar, DM ;
Wilson, S ;
Muir, AI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (13) :11303-11311