An nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations

被引:74
作者
Zayats, M
Pogorelova, SP
Kharitonov, AB
Lioubashevski, O
Katz, E
Willner, I [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Farkas Ctr Light Induced Proc, IL-91904 Jerusalem, Israel
关键词
bioelectrocatalysis; biosensors; gold nanoparticles; NAD(+)/NADH cofactors; surface plasmon resonance;
D O I
10.1002/chem.200305104
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
N-(3-Aminopropyl)-N'methyl-4,4'-bipyridinium is coupled to tiopronin-capped Au nanoparticles (diameter ca. 2nm) to yield methyl(aminopropyl)viologen-functionalized Au nanoparticles (MPAV(2+)-Au nanoparticles). In situ electrochemical surface plasmon resonance (SPR) measurements are used to follow the electrochemical deposition of the bipyridinium radical cation modified Au nanoparticles on an Au-coated glass surface and the reoxidation and dissolution of the bipyridinium radical cation film. The MPAV(2+)-functionalized An nanoparticles are also employed for the amplified SPR detection of NAD(+) and NADH cofactors. By SPR monitoring the partial biocatalyzed dissolution of the bipyridinium radical cation film in the presence of diaphorase (DP) NAD(+) is detected in the concentration range of 1 x 10(-4) m to 2 x 10(-3) m. Similarly, the diaphorase-mediated formation of the bipyridinium radical cation film on the Au-coated glass surface by the reduction of the MPAV(2+)-functionalized Au nanoparticles by NADH is used for the amplified SPR detection of NADH in the concentration range of 1 x 10(-4) M to 1 x 10(-3) M.
引用
收藏
页码:6108 / 6114
页数:7
相关论文
共 45 条
[1]   In situ investigations on the electrochemical polymerization and properties of polyaniline thin films by surface plasmon optical techniques [J].
Baba, A ;
Advincula, RC ;
Knoll, W .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (07) :1581-1587
[2]   Simultaneous surface plasmon optical and electrochemical investigation of layer-by-layer self-assembled conducting ultrathin polymer films [J].
Baba, A ;
Park, MK ;
Advincula, RC ;
Knoll, W .
LANGMUIR, 2002, 18 (12) :4648-4652
[3]   Surface plasmon resonance multisensing [J].
Berger, CEH ;
Beumer, TAM ;
Kooyman, RPH ;
Greve, J .
ANALYTICAL CHEMISTRY, 1998, 70 (04) :703-706
[4]   Real-time measurement of nucleic-acid hybridization using evanescent-wave sensors: steps towards the genosensor [J].
Bier, FF ;
Kleinjung, F ;
Scheller, FW .
SENSORS AND ACTUATORS B-CHEMICAL, 1997, 38 (1-3) :78-82
[5]   ELECTROCHEMISTRY OF THE VIOLOGENS [J].
BIRD, CL ;
KUHN, AT .
CHEMICAL SOCIETY REVIEWS, 1981, 10 (01) :49-82
[6]   Surface plasmon resonance imaging measurements of ultrathin organic films [J].
Brockman, JM ;
Nelson, BP ;
Corn, RM .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :41-63
[7]   DNA binding and hybridization on gold and derivatized surfaces [J].
Caruso, F ;
Rodda, E ;
Furlong, DN ;
Haring, V .
SENSORS AND ACTUATORS B-CHEMICAL, 1997, 41 (1-3) :189-197
[8]   The effect of substrate metal on 2-aminoethanethiol and nanoparticle enhanced surface plasmon resonance imaging [J].
Chah, S ;
Hutter, E ;
Roy, D ;
Fendler, JH ;
Yi, J .
CHEMICAL PHYSICS, 2001, 272 (01) :127-136
[9]   EFFECT OF VIOLOGEN STRUCTURE ON ELECTROREDUCTION OF NAD+ CATALYZED BY DIAPHORASE IMMOBILIZED ON ELECTRODES [J].
CHANG, HC ;
MATSUE, T ;
UCHIDA, I ;
OSA, T .
CHEMISTRY LETTERS, 1989, (07) :1119-1122
[10]   Photonic transduction of electrochemically-triggered redox-functions of polyaniline films using surface plasmon resonance spectroscopy [J].
Chegel, V ;
Raitman, O ;
Katz, E ;
Gabai, R ;
Willner, I .
CHEMICAL COMMUNICATIONS, 2001, (10) :883-884