Apolipoprotein E (apoE)-deficient mice have memory deficits that are associated with synaptic loss of basal forebrain cholinergic projections and with hyperphosphorylation of distinct epitopes of the microtubule-associated protein tau. Furthermore, treatment of apoE-deficient mice with the M1 selective agonist 1-methyl-piperidine-4-spiro-(2'-methylthiazoline)[AF150(S)] abolishes their memory deficits and results in recovery of their brain cholinergic markers. In the present study, we used a panel of anti-tau monoclonal antibodies to further map the tau epitopes that are hyperphosphorylated in apoE-deficient mice and examined the effects of prolonged treatment with AF150(S). This revealed that tau of apoE-deficient mice contains a distinct, hyperphosphorylated "hot spot" domain which is localized N-terminally to the microtubule binding domain of tau, and that AF150(S) has an epitope-specific tau dephosphorylating effect whose magnitude is affected by apoE deficiency. Accordingly, epitopes which reside in the hyperphosphorylated "hot spot" are dephosphorylated by AF150(S) in apoE-deficient mice but are almost unaffected in the controls, whereas epitopes which flank this tau domain are dephosphorylated by AF150(S) in both mice groups. In contrast, epitopes located at the N and C terminals of tau are unaffected by AF150(S) in both groups of mice. These findings suggest that apoE deficiency results in hyperphosphorylation of a distinct tau domain whose excess phosphorylation can be reduced by muscarinic treatment.