The glucocorticoid receptor (GR) is a ligand dependent transcription factor, which regulates the transcription of multiple hormone-dependent genes. The transcriptional regulation by GR takes place by interaction of GR with the basal transcription machinery and by recruiting glucocorticoid receptor interacting proteins (GRIPs). Previously we identified hnRNP U/SAF-A as a factor interfering with GR-dependent transcription by repressing glucocorticoid induced activation. To gain insight into the mechanisms that govern this interference, we have now investigated the transcription of GR-dependent reporter genes in Ltk-cells transiently transfected with a variety of hnRNP U constructs. We demonstrate that a hnRNP U construct lacking the GR-binding domain acts as a dominant negative factor that now enhances GR-driven transcription. In addition, hnRNP U repression of glucocorticoid induced transcription was found to be dependent on the amount of cotransfected GR, where a high amount of GR leads to ligand-inducible repression of GR-dependent reporter gene activity by hnRNP U, whereas low amounts of GR showed nearly no effect. The relative concentrations of GR, hnRNP U and DNA-binding sites for GR are important for the effect of hnRNP U on transcription, suggesting a model where hnRNP-U acts as a storage site for intranuclear GR. (C) 2001 Elsevier Science Ltd. All rights reserved.