New concept of relativistic invariance in noncommutative space-time: Twisted poincare symmetry and its implications

被引:237
作者
Chaichian, M [1 ]
Presnajder, P
Tureanu, A
机构
[1] Univ Helsinki, Dept Phys, Div High Energy Phys, Helsinki, Finland
[2] Helsinki Inst Phys, FIN-00014 Helsinki, Finland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevLett.94.151602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a systematic framework for noncommutative (NC) quantum field theory (QFT) within the new concept of relativistic invariance based on the notion of twisted Poincare symmetry, as proposed by Chaichian et al. [Phys. Lett. B 604, 98 (2004)]. This allows us to formulate and investigate all fundamental issues of relativistic QFT and offers a firm frame for the classification of particles according to the representation theory of the twisted Poincare symmetry and as a result for the NC versions of CPT and spin-statistics theorems, among others, discussed earlier in the literature. As a further application of this new concept of relativism we prove the NC analog of Haag's theorem.
引用
收藏
页数:4
相关论文
共 25 条
[1]   General properties of non-commutative field theories [J].
Alvarez-Gaumé, L ;
Vázquez-Mozo, MA .
NUCLEAR PHYSICS B, 2003, 668 (1-2) :293-321
[2]  
Alvarez-Gaumé L, 2001, INT J MOD PHYS A, V16, P1123, DOI 10.1142/S0217751X01002750
[3]  
[Anonymous], [No title captured]
[4]  
[Anonymous], [No title captured]
[5]  
Bogoliubov N.N., 1975, Introduction to axiomatic quantum field theory
[6]   Toward an axiomatic formulation of noncommutative quantum field theory [J].
Chaichian, M. ;
Mnatsakanova, M. N. ;
Nishijima, K. ;
Tureanu, A. ;
Vernov, Yu. S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (03)
[7]   Spin-statistics and CPT theorems in noncommutative field theory [J].
Chaichian, M ;
Nishijima, K ;
Tureanu, A .
PHYSICS LETTERS B, 2003, 568 (1-2) :146-152
[8]   On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT [J].
Chaichian, M ;
Kulish, PP ;
Nishijima, K ;
Tureanu, A .
PHYSICS LETTERS B, 2004, 604 (1-2) :98-102
[9]  
CHAICHIAN M, 1996, QUANTUM GROUPS
[10]  
CHAICHIAN M, HEPTH0403032, P14610