Multi-cell continuum approximation for discrete medium with microscopic rotations

被引:8
作者
Dmitriev, SV [1 ]
Vasiliev, AA
Yoshikawa, N
Shigenari, T
Ishibashi, Y
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
[2] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[3] Tver State Univ, Dept Math Modeling, Tver 170000, Russia
[4] Univ Electrocommun, Dept Appl Phys & Chem, Chofu, Tokyo 1828585, Japan
[5] Aichi Shukutoku Univ, Fac Commun, Aichi 4801197, Japan
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2005年 / 242卷 / 03期
关键词
D O I
10.1002/pssb.200460373
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We consider ID and 2D microscopic models for crystals having finite size particles, as is the case with many dielectric crystals. Finite size particles with rotational degrees of freedom can lead to several unusual effects exhibited by such crystals, e.g., a negative Poisson's ratio, incommensurate phase, and unique properties of topological defects. Derivation of the continuum approximations for these models leads to two developments: i) micropolar media, i.e., the continuum analog to the microscopic model with particles having rotational degrees of freedom; ii) the continuum approximation based on an extended periodic cell, which will be called the multi-cell approximation. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:528 / 537
页数:10
相关论文
共 49 条
[1]   Update on a class of gradient theories [J].
Aifantis, EC .
MECHANICS OF MATERIALS, 2003, 35 (3-6) :259-280
[2]   Molecular origin of auxetic behavior in tetrahedral framework silicates [J].
Alderson, A ;
Evans, KE .
PHYSICAL REVIEW LETTERS, 2002, 89 (22) :225503-225503
[3]   Negative Poisson's ratios as a common feature of cubic metals [J].
Baughman, RH ;
Shacklette, JM ;
Zakhidov, AA ;
Stafström, S .
NATURE, 1998, 392 (6674) :362-365
[4]  
Blinc R., 1986, INCOMMENSURATE PHASE
[5]  
BRAUN O. M., 2004, TEXT MONOGR
[6]  
Cosserat E, 1909, THEORIE CORPS DEFORM
[7]   One-dimensional crystal model for incommensurate phase .1. Small displacement limit [J].
Dmitriev, SV ;
Abe, K ;
Shigenari, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (12) :3938-3944
[8]   Mechanisms of transition between 1q and 2q incommensurate phases in a two-dimensional crystal model [J].
Dmitriev, SV ;
Shigenari, T ;
Abe, K .
PHYSICAL REVIEW B, 1998, 58 (05) :2513-2522
[9]   One-dimensional crystal model for incommensurate phase .2. Compressible molecules [J].
Dmitriev, SV ;
Shigenari, T ;
Abe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (09) :2732-2736
[10]   Domain wall solutions for EHM model of crystal: structures with period multiple of four [J].
Dmitriev, SV ;
Abe, K ;
Shigenari, T .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 147 (1-2) :122-134