[1] Development and application of a new Multicomponent Equilibrium Solver for Aerosols ( MESA) is described for systems containing H+, NH4+, Na+, Ca2+, SO42-, HSO4-, NO3-, and Cl- ions. The equilibrium solution is obtained by integrating a set of pseudo-transient ordinary differential equations describing the precipitation and dissolution reactions for all the possible salts to steady state. A comprehensive temperature dependent mutual deliquescence relative humidity (MDRH) parameterization is developed for all the possible salt mixtures, thereby eliminating the need for a rigorous numerical solution when ambient RH is less than MDRH( T). The solver is unconditionally stable, mass conserving, and shows robust convergence. Performance of MESA was evaluated against the Web-based AIM Model III, which served as a benchmark for accuracy, and the EQUISOLV II solver for speed. Important differences in the convergence and thermodynamic errors in MESA and EQUISOLV II are discussed. The average ratios of speeds of MESA over EQUISOLV II ranged between 1.4 and 5.8, with minimum and maximum ratios of 0.6 and 17, respectively. Because MESA directly diagnoses MDRH, it is significantly more efficient when RH < MDRH. MESA's superior performance is partially due to its "hard-wired'' code for the present system as opposed to EQUISOLV II, which has a more generalized structure for solving any number and type of reactions at temperatures down to 190 K. These considerations suggest that MESA is highly attractive for use in 3-D aerosol/air-quality models for lower tropospheric applications ( T > 240 K) in which both accuracy and computational efficiency are critical.