VAMPIRE microarray suite: a web-based platform for the interpretation of gene expression data

被引:82
作者
Hsiao, A
Ideker, T
Olefsky, JM
Subramaniam, S [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Med Sci Training Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
关键词
D O I
10.1093/nar/gki443
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microarrays are invaluable high-throughput tools used to snapshot the gene expression profiles of cells and tissues. Among the most basic and fundamental questions asked of microarray data is whether individual genes are significantly activated or repressed by a particular stimulus. We have previously presented two Bayesian statistical methods for this level of analysis, collectively known as variance-modeled posterior inference with regional exponentials (VAMPIRE). These methods each require a sophisticated modeling step followed by integration of a posterior probability density. We present here a publicly available, web-based platform that allows users to easily load data, associate related samples and identify differentially expressed features using the VAMPIRE statistical framework. In addition, this suite of tools seamlessly integrates a novel gene annotation tool, known as GOby, which identifies statistically overrepresented gene groups. Unlike other tools in this genre, GOby can localize enrichment while respecting the hierarchical structure of annotation systems like Gene Ontology (GO). By identifying statistically significant enrichment of GO terms, Kyoto Encyclopedia of Genes and Genomes pathways, and TRANSFAC transcription factor binding sites, users can gain substantial insight into the physiological significance of sets of differentially expressed genes. The VAMPIRE microarray suite can be accessed at http://genome.ucsd.edu/microarray.
引用
收藏
页码:W627 / W632
页数:6
相关论文
共 11 条
[1]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[2]   GOstat: find statistically overrepresented Gene Ontologies within a group of genes [J].
Beissbarth, T ;
Speed, TP .
BIOINFORMATICS, 2004, 20 (09) :1464-1465
[3]  
CONSORTIUM TGO, 2001, GENOME RES, V11, P1425
[4]   Variance-modeled posterior inference of microarray data: detecting gene-expression changes in 3T3-L1 adipocytes [J].
Hsiao, A ;
Worrall, DS ;
Olefsky, JM ;
Subramaniam, S .
BIOINFORMATICS, 2004, 20 (17) :3108-3127
[5]   Exploration, normalization, and summaries of high density oligonucleotide array probe level data [J].
Irizarry, RA ;
Hobbs, B ;
Collin, F ;
Beazer-Barclay, YD ;
Antonellis, KJ ;
Scherf, U ;
Speed, TP .
BIOSTATISTICS, 2003, 4 (02) :249-264
[6]   The KEGG resource for deciphering the genome [J].
Kanehisa, M ;
Goto, S ;
Kawashima, S ;
Okuno, Y ;
Hattori, M .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D277-D280
[7]   Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection [J].
Li, C ;
Wong, WH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (01) :31-36
[8]   Significance analysis of microarrays applied to the ionizing radiation response [J].
Tusher, VG ;
Tibshirani, R ;
Chu, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (09) :5116-5121
[9]   The TRANSFAC system on gene expression regulation [J].
Wingender, E ;
Chen, X ;
Fricke, E ;
Geffers, R ;
Hehl, R ;
Liebich, I ;
Krull, M ;
Matys, V ;
Michael, H ;
Ohnhäuser, R ;
Prüss, M ;
Schacherer, F ;
Thiele, S ;
Urbach, S .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :281-283
[10]   GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies [J].
Zhang, B ;
Schmoyer, D ;
Kirov, S ;
Snoddy, J .
BMC BIOINFORMATICS, 2004, 5 (1)