Optimal frames for erasures

被引:223
作者
Holmes, RB [1 ]
Paulsen, VI [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
frame;
D O I
10.1016/j.laa.2003.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study frames from the viewpoint of coding theory. We introduce a numerical measure of how well a frame reconstructs vectors when some of the frame coefficients of a vector are lost and then attempt to find and classify the frames that are optimal in this setting. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:31 / 51
页数:21
相关论文
共 12 条
[1]   SYMMETRIC HADAMARD MATRICES OF ORDER-36 [J].
BUSSEMAKER, FC ;
SEIDEL, JJ .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1970, 175 (01) :66-+
[2]  
CASAZZA PG, UNIFORM TIGHT FRAMES
[3]  
Conway J. H., 1999, GRUNDLEHREN MATH WIS, V290
[4]  
CONWAY JH, PACKING LINES PLANES
[5]  
FICKUS M, CONSTRUCTIONS NORMAL
[6]   Quantized overcomplete expansions in RN:: Analysis, synthesis, and algorithms [J].
Goyal, VK ;
Vetterli, M ;
Thao, NT .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :16-31
[7]   Quantized frame expansions with erasures [J].
Goyal, VK ;
Kovacevic, J ;
Kelner, JA .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 10 (03) :203-233
[8]  
HOLMES RB, OPTIMAL FRAMES
[9]   The Pythagorean Theorem: I. The finite case [J].
Kadison, RV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (07) :4178-4184
[10]  
SEIDEL JJ, 1976, P INT C THEOR COMB R, V1, P481