Determination of substrate specificity for peptide deformylase through the screening of a combinatorial peptide library

被引:59
作者
Hu, YJ
Wei, YM
Zhou, Y
Rajagopalan, PTR
Pei, DH
机构
[1] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA
[2] Ohio State Univ, Ohio State Biochem Program, Columbus, OH 43210 USA
关键词
D O I
10.1021/bi9820412
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Peptide deformylase is an essential Fe2+ metalloenzyme that catalyzes the removal of the N-terminal formyl group from nascent polypeptides in eubacteria. In vivo, the deformylase is capable of deformylating most of the polypeptides in a bacterial cell, which contain diverse N-terminal sequences. In this work, we have developed a combinatorial method to systematically examine the sequence specificity of peptide deformylase. A peptide library that contains all possible N-terminally formylated tetrapeptides was constructed on TentaGel resin, with a unique peptide sequence on each resin bead. Limited treatment with the Escherichia coli deformylase resulted in the deformylation of those peptides that are the most potent substrates of the enzyme. By using an enzyme-linked assay, the beads containing the deformylated peptides were identified and isolated, Peptide sequence analysis using matrix-assisted laser desorption ionization mass spectrometry revealed a consensus sequence, formyl-Met-X-Z-Tyr (X = any amino acid except for aspartate and glutamate; Z = lysine, arginine, tyrosine, or phenylalanine), for the E. coli enzyme. The deformylase is also capable of efficient deformylation of formyl-Phe-Tyr-(Phe/Tyr) peptides. These results demonstrate that, despite being a broad-specificity enzyme, the peptide deformylase deformylates different peptides at drastically different rates. In addition, the selectivity of peptide deformylase for the N-formyl over the N-acetyl group has been studied with N-alpha-fluoroacetyl peptides. and the results suggest that both electronic and steric factors are responsible for the observed specificity. The deformylase was also shown to exhibit esterase activity. These results will facilitate the design of specific deformylase inhibitors as potential antibacterial agents. This combinatorial method should be generally applicable to the study of the substrate specificity of other acylases and peptidases.
引用
收藏
页码:643 / 650
页数:8
相关论文
共 32 条
[1]   N-FORMYLMETHIONYL-SRNA AS INITIATOR OF PROTEIN SYNTHESIS [J].
ADAMS, JM ;
CAPECCHI, MR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1966, 55 (01) :147-&
[2]   ON RELEASE OF FORMYL GROUP FROM NASCENT PROTEIN [J].
ADAMS, JM .
JOURNAL OF MOLECULAR BIOLOGY, 1968, 33 (03) :571-&
[3]   CLEAVAGE OF N-TERMINAL FORMYLMETHIONINE RESIDUE FROM A BACTERIOPHAGE COAT PROTEIN IN-VITRO [J].
BALL, LA ;
KAESBERG, P .
JOURNAL OF MOLECULAR BIOLOGY, 1973, 79 (03) :531-537
[4]   Communication - Structure of peptide deformylase and identification of the substrate binding site [J].
Becker, A ;
Schlichting, I ;
Kabsch, W ;
Schultz, S ;
Wagner, AFV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (19) :11413-11416
[5]  
Bodanszky M., 1993, PRINCIPLES PEPTIDE S, V2nd
[6]  
BOGOSIAN G, 1989, J BIOL CHEM, V264, P531
[7]   Crystal structure of the Escherichia coli peptide deformylase [J].
Chan, MK ;
Gong, WM ;
Rajagopalan, PTR ;
Hao, B ;
Tsai, CM ;
Pei, DH .
BIOCHEMISTRY, 1997, 36 (45) :13904-13909
[8]   A combinatorial approach to identifying protein tyrosine phosphatase substrates from a phosphotyrosine peptide library [J].
Cheung, YW ;
Abell, C ;
Balasubramanian, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (40) :9568-9569
[9]   STERIC EFFECTS OF ALKYL-GROUPS - A CONE ANGLE APPROACH [J].
DATTA, D ;
MAJUMDAR, D .
JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 1991, 4 (10) :611-617
[10]   GENERAL-METHOD FOR RAPID SYNTHESIS OF MULTICOMPONENT PEPTIDE MIXTURES [J].
FURKA, A ;
SEBESTYEN, F ;
ASGEDOM, M ;
DIBO, G .
INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH, 1991, 37 (06) :487-493