Design and development of microfabricated capillary electrophoresis devices with electrochemical detection

被引:52
作者
Keynton, RS [1 ]
Roussel, TJ
Crain, MM
Jackson, DJ
Franco, DB
Naber, JF
Walsh, KM
Baldwin, RP
机构
[1] Univ Louisville, Dept Engn Mech, Louisville, KY 40292 USA
[2] Univ Louisville, Dept Elect & Comp Engn, Louisville, KY 40292 USA
[3] Univ Louisville, Dept Chem, Louisville, KY 40292 USA
基金
美国国家科学基金会;
关键词
capillary electrophoresis; electrochemical detection; 'on-chip' integrated electrodes;
D O I
10.1016/j.aca.2003.12.042
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Our efforts have been focused on developing a self-contained and transportable microfabricated electrophoresis (CE) system with integrated electrochemical detection (ED). The current prototype includes all necessary electrodes "on-chip" and utilizes miniaturized CE and ED supporting electronics custom designed for this purpose. State-of-the-art design/modeling tools and novel microfabrication procedures were used to create recessed platinum electrodes with complex geometries and the CE/ED device from two patterned ultra-flat glass substrates. The electrodes in the bottom substrate were formed by a self-aligned etch and deposition technique followed by a photolithographic lift-off process. The microchannels (20 mum deep x 65 Lm wide (average)) were chemically etched into the top substrate followed by thermal bonding to complete the microchip device. CE/ED experiments were performed using 0.02 M phosphate buffer (pH 6), an analyte/buffer solution (2.2 mM dopamine, 2.3 mM catechol) and varying separation voltages (0-500 V) with a custom electronics unit interfaced to a laptop computer for data acquisition. Detection limits (S/N = 3) were found to be at the micromolar level and a linear detection response was observed up to millimolar concentrations for dopan-tine and catechol. The microchip CE/ED system injected 50 pl volumes of sample, which corresponded to mass detection limits on the order of 200 amol. For the first time, an integrated "on-chip" multi-electrode array CE/ED device was successfully designed, fabricated and tested. The majority of the electrodes (six out of eight) in the array were capable of detecting dopamine with the amplitude of the signal (i.e., peak heights) decreasing as the electrode distance from the channel exit increased. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 105
页数:11
相关论文
共 59 条
[1]   Micro total analysis systems. 2. Analytical standard operations and applications [J].
Auroux, PA ;
Iossifidis, D ;
Reyes, DR ;
Manz, A .
ANALYTICAL CHEMISTRY, 2002, 74 (12) :2637-2652
[2]  
AUROUX PA, 2002, ANAL CHEM, V74, P2653
[3]   Fully integrated on-chip electrochemical detection for capillary electrophoresis in a microfabricated device [J].
Baldwin, RP ;
Roussel, TJ ;
Crain, MM ;
Bathlagunda, V ;
Jackson, DJ ;
Gullapalli, J ;
Conklin, JA ;
Pai, R ;
Naber, JF ;
Walsh, KM ;
Keynton, RS .
ANALYTICAL CHEMISTRY, 2002, 74 (15) :3690-3697
[4]  
Baldwin RP, 2000, ELECTROPHORESIS, V21, P4017, DOI 10.1002/1522-2683(200012)21:18<4017::AID-ELPS4017>3.3.CO
[5]  
2-X
[6]   An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications [J].
Chabinyc, ML ;
Chiu, DT ;
McDonald, JC ;
Stroock, AD ;
Christian, JF ;
Karger, AM ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2001, 73 (18) :4491-4498
[7]   Palladium film decoupler for amperometric detection in electrophoresis chips [J].
Chen, DC ;
Hsu, FL ;
Zhan, DZ ;
Chen, CH .
ANALYTICAL CHEMISTRY, 2001, 73 (04) :758-762
[8]  
CRAIN MM, 2003, IN PRESS MICROCHIP C
[9]   Microchip devices for high-efficiency separations [J].
Culbertson, CT ;
Jacobson, SC ;
Ramsey, JM .
ANALYTICAL CHEMISTRY, 2000, 72 (23) :5814-5819
[10]  
Dolník V, 2000, ELECTROPHORESIS, V21, P41, DOI 10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO